Quantcast
Channel: UC San Diego Jacobs School of Engineering blog
Viewing all 721 articles
Browse latest View live

IDEA Scholar: Tania Vazquez

$
0
0

Tania Vazquez learned a lot at UC San Diego—about engineering, and about her approach to life. A first generation college student, Vazquez spent most weekends her freshman year driving back home to Riverside because she missed her family and didn’t feel at home on campus. At one point, she considered transferring to a school closer to home.

Encouragement from her fellow IDEA Scholars and program director Gennie Miranda to stick it out one more year helped her find her place, and learn the importance of channeling fear.

“I realized that a lot of other people had the same fear I had too,” Vazquez said. “I learned that you have to do things even if you don’t quite feel ready for it.”

She pushed herself to get involved with the Humanas Unidas group on campus, even serving as social chair.

“That was the whole point of pushing my boundaries, because I’m not a very social person, but I decided OK I’m going to go for the position that makes me the most uncomfortable.”

She ended up learning a lot and actually enjoying it. She got involved in outreach activities, and dove head first into classes and projects. By her second year, she felt more comfortable on campus, and was sticking around for more weekends.

She said the IDEA Scholars program helped her find her footing and community on campus.
“It helps you make friendships I think, which makes the process a lot easier. If it weren’t for the IDEA program I don’t know if I would have stayed.”

She encourages students who find themselves where she as just a few years ago to remember that they are qualified to be here and belong here.


IDEA Scholar: Manwinder Uppal

$
0
0

Environmental engineering student Manwinder Uppal was eager to get involved in the IDEA Center before she even arrived on campus. The summer before her freshman year, she saw that IDEA hosted a summer engineering program to orient new students to campus and share some tips to make the coursework a bit easier.

“Neither of my parents and none of my family members had gone to college so that was something that I needed,” Uppal said. “I got super excited and thought ‘Yay, an intro to college life!’ As soon as I came to campus I got lost for two hours, so it was good that we had an intro week.”

Since then, she’s participated in skills workshops run by IDEA on things like the python programming language, and was part of the JUMP mentoring program. She also branched out on campus, finding community through the Raza Resource Centro and Women’s Center, and encourages other students to do the same.

“I wish I knew more or went to the Women’s Center and Raza Resource Centro a lot more, because I basically live there now,” she said. “That whole area is really student oriented. When I did have way too much of an overwhelming situation going on with school or something I could talk to one of those advisors easily so it made it homey. That’s what solidified home away from home for me.”

She’ll be working for a year while deciding how best to accomplish her goal of making an impact through sustainable design.

Chava Angell – nanoengineer and science communicator

$
0
0

By Kritin Karkare

Ask nanoengineering Ph.D. student Chava Angell if nanorobots are going to take over the world and she might just chuckle at you. It’s a question she fields all the time at nanoengineering outreach events, but it never gets old. Her passion for sharing nanoengineering has led her to participate in a San Diego Comic-Con panel about the perception of nanoengineering in society, and the UC Grad Slam research communication competition. She also co-found the NanoXpo showcase at UC San Diego.  

“I think a lot of people view nanotechnology as this magical force,” Angell said. “But it’s very tangible. It’s not inaccessible. I want people to understand it’s just manipulating materials on a different scale.”

As a graduate student in Professor Yi Chen’s lab, Angell manipulates DNA to make nanomachines that could improve drug delivery. She builds 3D structures out of the genetic material, taking advantage of DNA’s different properties like responding to small molecules and changes in pH. In addition to medicines, these nanomachines could deliver proteins and other biomolecules where they’re needed.  

Her DNA robots are meant to solve a common issue when drug molecules are absorbed by a cell: Once a molecule enters the cell, it triggers a process where the cell turns part of its cell wall inside out and produces a compartment called an endosome, which holds the drug molecule inside. Unfortunately for the molecule, the endosome typically merges with lysosomes, which break down the molecule and prevent it from reaching its target. Angell’s approach is to take advantage of the acidification process that endosomes go through. She designed the nanorobots to respond to the endosome’s decrease in pH and expand, letting the molecule break free and continue on its journey.

She’s convinced that DNA nanotechnology like this could be the way of the future.

“It’s pretty bio-compatible. It’s easy to make structures out of as long as you follow certain design rules. It’s easy to target certain populations of cells,” she noted.

Talking nanoengineering

When she’s not working with DNA to improve human health, Angell is often found explaining her work and the field of nanoengineering, making it easy for everyone to understand. Participating in the Comic-Con panel “Nanotechnology in Sci-Fi: Fact or Fiction” was one of her favorite experiences. At the panel, she helped dispel some of the myths behind the nanoengineering commonly seen in movies and TV shows. For example, many people wonder whether the Nanites in Star Trek—nanorobots that took over space ships and founded their own civilization—exist in real life and could take over Earth. Angell helped quell that fear to a room so full that people had to be turned away. 
Chava Angell in science communicator-action at the inaugural
NanoXpo in 2017, which she helped co-found.


 “Honestly I was surprised by how many people wanted to learn about nanotechnology,” she said. “People wanted to know what was possible.”

She said it was cool to see the level of interest people had, and know that there were people from all over the world interested in nanotechnology.

While she’s confident in her ability to communicate nanoengineering to different audiences now, it wasn’t always that way.  

“I needed to force myself to be comfortable with it,” she said.  

Years of participating in public outreach events like Comic-Con and research talks eased her worries about public speaking.

Angell expanded on this vision of practicing communication while co-organizing NanoXpo, a research conference devoted to showcasing the UC San Diego NanoEngineering Department’s different research groups.  The event included a poster competition judged by industry representatives and a networking reception. Graduate students had the chance to connect with industry partners, as well as with other students from different labs.      

Angell is aware that not every graduate student is as motivated to practice communicating as she is, but says there are real benefits to it.

“As an engineer, you need to realize that especially as a Ph.D. student you’re defending your thesis to people who have no idea what your field is,” Angell said. Being able to convey your work and the importance of it is vital.

She believes that creating more opportunities to practice communication will encourage more students to talk about science with people in their field and the public.  

As for whether nanorobots will take over the world? Angell says it’s not likely.

$2 million NSF grant to create intelligent, flexible surgical robots

$
0
0
Professor Michael Yip, principal investigator for the grant.
Photo by David Baillot
Electrical and mechanical engineers at UC San Diego received a $2 million grant from the National Science Foundation to develop flexible snake-like robots outfitted with smart skin and embedded actuators for use in medical procedures. These robots will enable safer and more efficient endoscopic and intravascular procedures for a wide range of ailments, from cardiovascular disease to cancer.

Flexible, invertebrate-like robots capable of twisting through the tiny, curvy spaces of the human anatomy are called continuum robots.  While versions of these machines exist for surgical applications today, it is difficult for doctors to know where exactly they are in the body during a procedure because the robots can be up to four feet long and lack sensors to detect their position. Furthermore, surgical robots that are currently FDA-approved lack the dexterity and flexibility needed to access spaces deep within the body. This makes it often impossible to localize, reach, and treat diseases, reducing the advantages the precision robotics provide to surgery.

To address these challenges, the researchers plan to create robots that leverage machine learning to teach themselves how to access challenging anatomy, while increasing their physical dexterity by embedding new technologies for actuation and sensing. They plan to develop a thin skin embedded with arrays of antennas, capable of tasks like wirelessly tracking the robot’s position in the human body, making it easier for doctors and surgeons to manipulate it when and where needed.

“Our goal is to develop safe, robotic surgical systems that not only augment what doctors can do, but create new procedures they would have never been able to perform by hand,” said Michael Yip, a professor of electrical and computer engineering at UC San Diego and principle investigator for the grant. “That is the advantage that continuum robots bring – they are an extension of the surgeon’s hands that can reach and perform surgical tasks that otherwise would be impossible to do”.

The researchers also plan to develop new modeling, control and validation platforms to overcome challenges for sensing, testing, and reproducibility in flexible medical robots. Their modeling platform would consider the robot and the human tissue environment as a tightly coupled and controllable system, instead of two distinct entities.

Since there are currently no off-the-shelf hardware solutions for either the robot or biologically relevant testing environments, there are no standardized performance metrics for comparison and validation across this field. This has made it difficult for researchers and industry to objectively determine how much progress is being made with new developments in surgical robotic platforms. The team aims to create these validation metrics, which will have a significant impact on the medical robotics research community by driving down barriers to robotics research and development as well as offering templates and common validation strategies to improve the communication, interpretation, and reproducibility of new research in the field.

The project is a multidisciplinary collaboration including electrical and computer engineering Professors Dinesh Bharadia and Yip, and mechanical engineering Professors Miroslav Krstic and Tania Morimoto.

MEMS Q&A with Albert P. Pisano, Dean of the UC San Diego Jacobs School of Engineering

$
0
0
“As a MEMS practitioner for almost 30 years, I fully understand the need to focus at the device level to ensure that the MEMS design meets SWAP (Size, Weight And Power) and other requirements,” said Albert P. Pisano, Dean of the UC San Diego Jacobs School of Engineering. “But I truly believe that MEMS designers must learn to think more about subsystem and system issues, since the future of MEMS will be won by those who cannot only design the device right, but who can design the right device. By taking a much more market- and system-oriented approach to MEMS design thinking, companies in this industry will realize greater success.”

portrait of Albert P. Pisano, Dean, UC San Diego Jacobs School of Engineering
Read the full Q&A with Albert P. Pisano and Nishita Rao, marketing manager for technology communities, at SEMI

The Q&A was put together in advance of Pisano's October 24 closing keynote presentation, MEMS and Systems in the Digital Future, at MEMS & Sensors Executive Congress, October 22-24, 2019, at Coronado Island Marriott Resort & Spa in Coronado, Calif.

Association for Computing Machinery attracts over 500 students at its fall kickoff

$
0
0
By Daniel Li

More than 500 students showed up for ACM's Fall Kickoff.
Photos courtesy of ACM
 
This year, a new student organization has been rapidly gaining momentum at UC San Diego: the Association for Computing Machinery (ACM). 

ACM’s Fall Kickoff, which was held on Sept. 29 at Price Center East Ballroom, attracted a whopping 500 students, with the line spanning from the ballroom entrance to Library Walk. In the first month since its launch, the club has also hosted over 15 professional and social events. 

According to founder and president Antony Nguyen, a fourth-year computer engineering student, ACM is an international organization for computing catered towards engineers, designers and entrepreneurs. Just last week, the club introduced “Hack School,” a workshop series aimed to teach students the basics of Full Stack Web Development. 

“Our events are geared towards the field of computing and there's so many different areas we hope to explore, including software engineering, as well as mobile app, web and game development,” Nguyen said. “We also host a variety of social events to build a community so that everyone can get to know each other.”

He got the inspiration to start ACM at UC San Diego in January 2019 after stumbling upon UCLA’s chapter, which started four years ago and boasts a membership of over 1000 people. In the subsequent months, Nguyen and several friends teamed up to start a chapter at UC San Diego. 

Before launching the club, the group met over the summer to think of ways to differentiate ACM from the abundance of engineering organizations on campus; one important aspect was how to define membership. 

Students on the ACM leadership board rep the group and its
signature diamond logo. 
“I remember as a first- and second-year student, I joined some clubs and people would ask me ‘Are you part of this club?” Nguyen said. “And this was hard for me to answer because I just show up to events and many clubs really don’t define what it means to be a member.”

Vice President of Membership Kendall Nakai, a second-year computer engineering student, explained that the chapter prides itself on being member-centric and has a membership portal where students can track their progress within the organization.

“We wanted members to have a way to know how far they’ve come in the organization,” Nakai said. “By showing up to events, members can get incentives, such as priority access to networking events. I think it’s important to reward the people who consistently show up to all events.”

Unlike most student organizations, which use Slack as their main method of communication, ACM adopted Discord, a text-messaging platform popular in the gaming community. Nguyen said that this choice was deliberate, as the club hopes to develop more personal connections with its members. 

“Our discourse is a big reason for our success,” Nguyen said.  “By summer we had over 100 incoming first-years who hadn't even started school on our Discord. Nowadays, the discord is used on a daily basis; people play games with each other, give career advice and just talk about life.” 

Nguyen also attributes the large turnout to the club’s advertising efforts. The team branded itself as part of “the largest computing organization in the world” and distributed flyers across campus. He added that having the entire executive board well-connected within the engineering community gave them a tremendous advantage. 

ACM members on a hike just blocks away from campus.
“Having connections before starting your organization is extremely important,” Nguyen said. “The moment we launched our kickoff, we sent personal invitations to our event page on Facebook. It's like a giant chain effect; people start pressing ‘going,’ and then their friends on Facebook will see it too.”

Nguyen stressed the main benefit of ACM is that it’s tied to an international organization, introducing students to a large, diverse network of people. 

“Having a strong network is what gets you jobs at companies, big or small,” Nguyen said. “We can give students connections that otherwise might be harder to get from other clubs.”

5th annual SD Hacks draws hundreds of student participants

$
0
0

By Daniel Li

More than 750 students participated in the 5th annual SD Hacks.
Photo credit: Shirley Guo, Triton Engineering Student Council


For 36 hours straight, 143 student teams crammed together at UC San Diego’s RIMAC Arena to participate in the fifth annual SD Hacks hackathon

Held from Oct. 25-27, SD Hacks is an intercollegiate hackathon in which students come together to tackle a given problem by developing technical solutions. The event, organized by the Triton Engineering Student Council, was also sponsored by ten companies and organizations, including the Naval Information Warfare Center, Northrop Grumman Corporation, and Activbody. A total of 435 students participated this year.

Hackers were asked to develop projects that fell into one of the three main tracks: Sustainability, Education, and Health and Wellness. Attendees were also encouraged to participate in various challenges set by SD Hacks sponsors. 

After two hours of judging on the last day, a trio of students from Harvey Mudd College-- Matthew Krager, Alfredo Gomez, and Alice Chi-- emerged as the overall winners of the hackathon. The team developed a tool called EverGreen, which aims to analyze and reduce the carbon emissions of code. 

“Given an expected amount of traffic and set of computer specs, EverGreen is able to capture the environmental impact that a programmer's code will have by using various metrics such as the carbon emitted in the average lifespan of a car,” the EverGreen project submission states. “Since many of today's large computations are done on the cloud, we have provided users with various industry standard AWS instance type-based architectures.”

They received Apple iPads, Bose SoundLink wireless headphones and an Amazon giftcard for their 1st place prize. 

For some students, it was their first time participating in a hackathon. Second-year UC San Diego students Vincent Tran, Steven Liu, Isabel Suizo and Vasundhara Sengupta developed a live-streaming app called Live.ly. 
Steven Liu, Vasundhara Sengupta, Vincent Tran, Isabel Suizo
Photo by Daniel Li

“The concept behind Live.ly is that you're walking around on the street late at night and things could be a little dangerous,” Tran said. “You don't want to call 911 but you might want to let a friend know, and currently your options are to call or text them.  But that might hinder your ability to get out of a dangerous. If something does happen, you're not gonna be able to whip out your phone and draft up this text. So that's the issue we're trying to solve.” 

Despite having to start over on their project 12 hours into the event, Liu appreciates his team’s positive attitude and how he was able to learn new programming languages. 

“I would describe this weekend as a roller coaster,” Liu said. “Coming in, we were all super ambitious and ready to build something. And as it turns out, development is not always so easy.”

Third-year UC San Diego computer science students William Vuong, Howard Lin, Jack Song and fourth-year student Kevin Vildosola teamed up to create Stutter, an interview prep service that analyzes and provides feedback on how people perform during interviews. 
Jack Song, Howard Lin, William Vuong, Kevin Vidosola
Photo by Daniel Li

 “Ultimately, as college students, we always interview for internships or jobs, but never receive feedback,” Vuong said. “We wanted to give people a way to better prep for interviews so that we can all crush future interviews.”

Vildosola is grateful that he was able to learn from other students who had more experience and knowledge in development. 

“My experience at SD Hacks was honestly amazing,” Vildosola said. “It’s so rewarding because I never imagined I’d be at a stage right now where I could be talking about an app that I helped create.”

According to SD Hacks director and computer science student Jimmy Dang, preparations for SD Hacks started in June 2019, after the HackXX hackathon. The organizing team comprised of 20 members from the HackXX team and Triton Engineering Student Council. Dang explained that the hardest parts of the planning process were attracting sponsors and finalizing day-of event logistics. 

“There were a lot of moving parts in a lot of different areas of the hacking venue, especially moving people from RIMAC arena to Mandeville,” Dang said. “We also had a lot of rebranding to do, given it was our 5th anniversary and we wanted to make sure it was the best hackathon we’ve ever held.”

His favorite part about SD hacks: interacting with both sponsors and hackers during the event. Dang emphasized that the hackathon would not be possible without the collaboration among companies, student organizations, volunteers, judges and mentors. 

“Being able to interact with the attendees at our event made me feel like all of the effort that was put in, completely worth it,” Dang said. “Seeing people satisfied and enjoyed with our event made me feel satisfied with the work that I, as well as the entire team, put in over the course of four to five months.”

Winners: 

First Place Overall: EverGreen (Matthew Krager, Alfredo, and Alice Chi)

Second Place Overall: Corssary (Jacob Rothman, Jonathan McGowan, Roderick Nappier, and Dhanush Karthikeyan)

Third Place Overall: Ribbit (Sarah Ekaireb, Spencer Congero, Sarah Jung, and Alex Yu)

Health & Wellness Category: Recipe 101 (Xiaolan Huang, Yitian Wang, Moon Jiao, Duolan Ouyang)

Sustainability Category: EcoEat (Spencer Churchill, Moses Lee, Sophia Song)

Education Category: Virtus (Sabeel Mansuri, Subhash Ramesh, Nikhil Pathak, Ayush Shukla)

A full list of winners can be found at
https://sd-hacks-2019.devpost.com/submissions


Researcher by day, Ironman by night

$
0
0

By Daniel Li

Beril Polat
Not many people have the willpower to complete a 12-hour race consisting of a 2.4-mile swim, 112-mile bike and 26.2-mile run. Not many have the smarts and stamina to earn a doctorate degree in nanoengineering. But the number of people capable of doing both simultaneously is miniscule. 

For fourth-year UC San Diego nanoengineering Ph.D. student Beril Polat, training for Ironman competitions and her graduate school work go hand-in-hand.

“The main reason why the Ironman is so challenging is there’s also a mental aspect to it,” Polat said. “And that kind of challenge helps a lot in grad school because you get a lot of stress from work, deadlines, and publishing. After finishing an Ironman, I came back to lab two days later, and there were some small problems we were facing. I remember thinking that this was so small compared to what I just accomplished so I wasn’t going to let it bother me; I didn’t let it get into my head and tried to solve it.”

Polat completed her undergraduate and master’s degrees in chemical engineering at Johns Hopkins University before matriculating to UC San Diego to pursue a Ph.D. in nanoengineering. She’s currently a student in Professor Darren Lipomi’s nanoengineering lab, where she develops tattoo sensors to help patients with neck cancer monitor and regain their ability to swallow. 

Polat is a graduate student in Professor Darren
Lipomi's nanoengineering lab.
 “The reason why we are targeting neck cancer is because after patients get chemotherapy, their swallowing may be affected as a side effect,” Polat said. “We are trying to make a tattoo sensor that they can apply themselves at home instead of coming to the hospital very frequently. They can apply it and that data on their muscle strength will be sent through their phones to physicians so they can monitor it.”

Outside of lab, Polat is an avid member of UC San Diego’s triathlon club. She was introduced to triathlons during her first year at UC San Diego after meeting members from the triathlon club. She recalled being hesitant at first about joining because of her busy schedule, but then fell in love with the team and competitive nature of the sport.  

“In college, I swam varsity for two years at Hopkins, but the stress level was too high for that so I quit,” Polat said. “Because of that, I didn't compete in a sport for years, which kind of rubbed me the wrong way. After coming to triathlon practices at UCSD, the feeling of competing came back to me and it felt amazing.”

Polat recently competed in an Ironman Triathlon this past summer in Canada. The Ironman is considered the ultimate triathlon and test of endurance.

“This was my second time competing in an Ironman Triathlon,” Polat said. “I competed in it for the first time with my boyfriend the summer of 2018. I signed up eight months before the race day and trained every day. My goal is to do at least one every year.”

According to Polat, she starts her day at 6:30 am with training every day. Her morning workouts usually consist of cycling for an hour and running three miles. On the days where Polat trains twice a day, she has a swim workout in the evening at Canyon View pool on campus. 

“I try to train at least once a day, sometimes twice,” Polat said. “I usually go in the early morning because I want to keep a schedule where I am at work from 9 am to 5 pm. I'm not forced to go every day, but I know that if I want to get better and faster, I need to train that much.”
 
Polat during the 26.2-mile run, the last leg of an
Ironman Triathlon.
Polat appreciates how competing in triathlons has been a healthy escape from her hectic life in graduate school. Her most important takeaway from this experience: time management. 

“I recommend anyone to really commit to a non-school related activity, whether it be a sport, music, or art,” Polat said. “It really keeps you grounded and teaches you how to keep track of your goals. At times, it can definitely be a challenge because it’s hard to juggle both at once. However, if it wasn’t challenging I wouldn’t do it.”

In the future, Polat envisions herself shifting gears and working in industry. Although she enjoys the process of conducting research at her lab, Polat has learned that she prefers having a faster turnaround time for products that she works on.  

“When you conduct research in a lab, it can take a long time to get something out,” Polat said. “You can publish it but getting it into the market is very hard and requires a lot of steps. I like the industry aspect of being able to see people use something that I worked on and designed.”

Her next challenge? Ironman Maryland in September.


Students Enspire the next generation of engineers

$
0
0
By Daniel Li

More than 180 high school students came to UC San Diego on Monday, Jan. 27 for Enspire, an annual daylong event for students to learn about different engineering disciplines and how to fund their college education. The event, held at Price Center Ballroom East, was organized by the Triton Engineering Student Council.

Computer science professor Christine Alvarado kicked off the event as the keynote speaker. Alvarado discussed her research in supportive learning and emphasized the importance of not giving up, even if the field might seem too hard. 

“It's not always easy to come into college studying engineering or computer science, but it can be super rewarding and you do not need experience coming in to succeed,” Alvarado said. “Many of our students who come into UCSD as computer science and engineering majors have never taken a programming class before.”

Financial aid counselor Rashinda Hutchinson took the stage next and spoke to students about the different types of aid packages. She also educated students on important deadlines for the FAFSA application, strongly encouraging them to start in October of their senior year.

In an effort to introduce students to the myriad of engineering-related student organizations at UC San Diego, TESC invited two panels onto the stage. The first panel was focused on diversity, with representatives from Women in Computing, the Society of Hispanic Professional Engineers, National Society of Black Engineers, and Society of Asian Scientists of Engineers. Meanwhile, the second panel made up of representatives from different engineering-specific organizations, including electrical engineering, aerospace engineering, chemical engineering, computer science, and bioengineering.

After the presentations, the students were broken up into groups of six to participate in four
workshops: AIAA Bottle Rocketry Activity, HKN Circuitboard Challenge, TritonXR VR Demo, and HKN MAE activity. According to TESC outreach lead Nicholas Fu, these workshops were designed to showcase the different aspects of engineering, ranging from mechanical to electrical and computer engineering.

“We wanted to show students how to problem solve in interactive ways, without an instruction set,” Fu said. “We believe that the students did great and were pleasantly surprised about how many ingenious ways they solved issues.”

Isiah Encakado, a senior from Mountain Empire High School, came to the event to learn more about engineering opportunities at UCSD and interact with college students. He hopes to pursue a degree in computer science in college. 

“So far, I’m really glad I came and everyone has been extremely welcoming,” Encakado said. “I am definitely learning new concepts and skills from these workshops”

According to Fu, the planning team, which consisted of three committee members and several board members, started preparing in the summer to go over big picture ideas and logistics. The hardest part: making sure all of the dates and numbers were set.

“We had some difficulty with getting the exact number of students and then telling the organizations we were working with how much they should bring for their activities,” Fu said. “We definitely learned a lot about the merits of finalizing attendance numbers early and then staying firm after.”
Fu’s favorite part about running Enspire is working closely with high school students during the interactive workshops.

“It really helped me realize why we worked so hard the many weeks before,” Fu said. “I loved seeing how the students worked together and what they were able to do.”

Barrett Romasko: structural engineer

$
0
0


 By Daniel Li

Barrett Romasko’s path in college has been full of exploration. Romasko, a senior majoring in structural engineering with a focus on aerospace structures, applied to UC San Diego without knowing much about the different applications of structural engineering, assuming it only involved civil engineering structures. His willingness to seek out new opportunities — through on-campus activities, classes, and internships — has been a contributing factor in helping him figure out his interests and goals for the future. 

On campus, Romasko is heavily involved in the UC San Diego Society of Civil and Structural Engineers (SCSE), which has three technical project teams that students can join to get hands-on structural engineering experience: steel bridge, concrete canoe, and seismic design. Romasko has been part of the steel bridge project team since his sophomore year –he was the team’s welding lead his junior year and is currently the project manager. 

The steel bridge project challenges students to design, fabricate, and construct a scaled model bridge that stays competitive in terms of the lightest weight, greatest stiffness, and fastest construction speed. The students start preparing their bridge each fall and bring it to the annual Pacific Southwest Conference each year to see how it stacks up to the competition.

The steel bridge team with their bridge.
“We start the design process in fall quarter, which generally consists of using a lot of design software and analysis,” Romasko said. “Winter quarter is dedicated to fabrication, so the team takes the design to a machining space and manufactures each component of the bridge. The last stage is construction, which is when we practice assembling each member of the bridge according to the regulations that we received in preparation for the competition.”

According to Romasko, the hardest part of the competition is getting all the components fabricated by the competition in April. That was compounded this year, as the team had to find a new location to fabricate their bridge, as the location they’d been using for 18 years was no longer available. Romasko and his co-project manager got to work and were able to come up with a solution.

Despite unexpected challenges, Romasko has enjoyed working on the steel bridge project the past three years. His favorite parts about steel bridge: the teamwork and hands-on learning aspect.

“I really like steel bridge because you get to apply what you learn in class to a real project and work with so many cool, motivated people,” Romasko said. “You also start to understand important industry concepts such as fabrication and tolerancing.”

Romasko encourages students to get involved in student groups as early as possible, and stresses the importance of finding organizations that are not only career focused, but also fun. 

“Joining the steel bridge project has introduced me to so many new people that I wouldn’t have met otherwise,” he said. “It has been a good way for me to make friends who share like-minded interests.”

In addition to their hands-on technical projects, SCSE organizes two main community outreach events each year: Seismic Outreach and Esperanza International. 

Members of the steel bridge team.
“Seismic outreach consists of us going to schools to teach elementary and middle school students about how to design for seismic safety and teach them about earthquakes,” Romasko said. “The goal is to get these students more interested in STEM fields. We also have another event where we go down to Rosarito in Mexico with an organization called Esperanza International, and put our engineering skills to use as we help build houses for the less fortunate.”

In addition to his involvement in SCSE, Romasko is a research assistant in Professor Machel Morrison’s lab, where he works on projects related to metallography and mechanics of materials. He’s also nabbed several internships over the summers, working at the Naval Surface Warfare Center in 2018 and General Atomics in 2019. 

“Internships are valuable because you can get direct experience in the industry,” Romasko said. “The internships that I have done really allowed me to see what I could do with my major and what I don’t want to do with my major. For example, at General Atomics, I was a manufacturing engineering intern; after the summer, I realized that although it was a great learning experience, I wouldn’t want to do it as a career. I feel that it is important for everyone to explore different areas to find what they’re most passionate about, and even more importantly, to find what they aren’t passionate about.”

Romasko came to UC San Diego thinking that he was going to follow the civil structures route in the structural engineering department, but during his internship at the Naval Surface Warfare Center, he realized that aerospace structures were more interesting to him. Without that internship, Romasko said he fears he would never have changed to the aerospace structures focus.

Romasko is returning to UC San Diego to complete a master’s degree in structural engineering this fall. In the future, he hopes to work abroad for a couple years, either in Australia, Europe, or New Zealand.

“I would love to work outside of the United States for two to three years doing something related to aerospace structures,” Romasko said. “One of my dream companies to work at is Virgin Galactic, which specializes in developing commercial spacecraft.”

Metabolic and genetic basis for auxotrophies in Gram-negative species

$
0
0
By Yara Seif

While some bacteria survive independently, others reduce their metabolic expenditures by utilizing the nutrients available to them in their environment. These bacteria choose to adapt the concept of simple living or “less is more,” meaning one can survive on minimal requirements (we could definitely learn from them). Auxotrophy, a.k.a nutritional dependencies, are a characteristic of host adaptation. They are hard to characterize experimentally because there are too many nutrients to choose from, and also because they differ from one strain to another.

In a study published Mar. 5 in PNAS, we develop a computational workflow that uses both flux balance analysis and comparative genomics to predict nutrient requirements de novo and from sequences alone.

In our workflow, we compare the gene content across several strains of bacteria, and build metabolic networks tailored to each genetic background. Next, we simulate for growth on a minimal medium, and when that cannot be achieved, we run our algorithm called AuxoFind, to search for possible nutrients that would restore growth in silico.

Metabolic networks were tailored to the gene content of different bacteria and nutrient dependencies were predicted and validated experimentally. Image courtesy of Systems Biology Research Group


We find that when the same gene is missing, the nutrient requirements change across species, because they have different metabolic networks and combinations of alternative pathways. We also observed that the absences are manifested as a result of a large range of genetic modifications going from simple and small mutations (like single nucleotide polymorphisms) to large and complex genetic changes (whole genome rearrangements and multi-gene deletions).

The significance of this work is as follows:

Patients with certain diseases (such as Crohn’s disease or cystic fibrosis) tend to be chronically infected with bacteria. Over time, these bugs become more vicious because they slowly adapt to the in vivo environment. Understanding how these adaptations occur is a first step towards devising therapeutic solutions.

###

Yara Seif is a UC San Diego bioengineering Ph.D. student. As a member of Bernhard Palsson's Systems Biology Research Group, she studies the metabolism of bacterial strains as well as the evolution of metabolic traits across strains especially in relation to their lifestyle. Her research so far has included multi-strain genomic and metabolic analysis of gram-negative strains using a combination of constraint-based metabolic modeling, comparative genomics and machine learning.

Mechanical engineer recognized by Society for Industrial and Applied Mathematics

$
0
0
Jorge Cortes, a professor in the Department of Mechanical and Aerospace Engineering has been inducted as a 2020 Fellow by the Society for Industrial and Applied Mechanics.
Cortes is being recognized for contributions to the control and optimization of network systems.

The fellows were nominated for their exemplary research as well as outstanding service to the community. Through their contributions, SIAM Fellows help advance the fields of applied mathematics and computational science.

Cortés' research interests are on distributed coordination algorithms, autonomous robotic networks, adversarial networked systems, mathematical control theory, geometric mechanics and geometric integration. The recent emergence of low-cost, highly-autonomous vehicles with control, communication, sensing, and computing capabilities has paved the way for the deployment of robotic sensor networks in a wide range of applications. Controlled motion coordination of these networks will have far-reaching implications in the monitoring of natural phenomena and the enhancement of human capabilities in hazardous and unknown environments. Motivated by these scenarios, Professor Cortes' research program is developing systematic methodologies to control autonomous, reliable, and adaptive mobile networks capable of operating in unknown and dynamic environments.

Ruth J. Williams, from the UC San Diego Department of Mathematics, is also being recognized for contributions to the study of stochastic processes and their applications.

Full SIAM release here: https://sinews.siam.org/Details-Page/siam-announces-class-of-2020-fellows

Jessica Sandoval: graduate student, ROV pilot, researcher

$
0
0


When Jessica Sandoval isn’t building robot components and microplastic detectors at the University of California San Diego, she drives a remotely operated underwater vehicle for an organization founded by Robert Ballard--the man who discovered the Titanic’s wreck.

This spring, Sandoval was part of a team of scientists working to understand plastic degradation in the ocean whose research was featured in The New York Times. The team of engineers and marine biologists at the UC San Diego Scripps Institution of Oceanography is studying how microplastics and microfibers enter and spread in the environment, particularly the ocean. Sandoval developed an instrument called the Automated Microplastics Identifier that gets these microfibers to fluoresce, making it easier to detect them and study them. She also developed software to quantify the amount of plastic in each sample and generate information on the features of the plastics using image recognition.

“It is an exciting first step, using automation technologies to assist with the monitoring of this prevalent marine pollutant,” said Sandoval, who began developing this technology as an undergraduate student at MIT. “With such technologies, we can more easily process samples from across the globe and generate a better understanding of microplastic distribution.”

Sandoval is also a PhD student in the Bioinspired Robotics and Design Lab of Professor Mike Tolley, developing new robotic technologies inspired by insects, animals and nature. In October, she was part of a team that developed a better suction cup inspired by a fish with extraordinary gripping capabilities, called a clingfish. By studying how the clingfish is able to strongly yet gently stick to both smooth and rough surfaces, Sandoval and other engineers in Tolley’s lab were able to develop an innovative suctioncup capable of delicately lifting objects like eggs or shells. Sandoval was the first author of the paper published in the journal Bioinspiration and Biomimetics.

Because she pilots an ROV on the research ship Exploration Vessel Nautilus, she got to test a prototype of her suction cup in the field during one of the ship’s missions. The job is an ideal combination for Sandoval.

“I am fascinated by marine biology and the technology that allows us to observe and measure it,” she said in an interview on the Nautilus’ website. “The ocean provides an imagination’s playground in which there is much to be explored and discovered. This excitement of the not yet known definitely sparked my interest in ocean exploration. That and the incredible plethora of marine biodiversity that exists in our oceans.”

Discovery of High-Entropy Ceramics via Machine Learning

$
0
0
by Kevin Kaufmann and Prof. Kenneth Vecchio

Materials are an essential part of our world; they have enabled us to build cities, treat disease, and communicate across the world in real time. For centuries, material scientists have been working to build our material library and to discover new materials with greater performance and better property trade-offs. Over the past few decades, however, the rate at which new materials are being discovered has been slowing continuously. This is due to several factors including increasingly stricter regulations, more challenging performance metrics, and increasingly more expensive empirical development strategies.

The reduced rate of material discovery is also in part because many of the simplest combinations have been investigated, and the number of remaining possible combinations is quite extensive. For example, if random combinations of five elements from the periodic table are combined in equal amounts, there would be 1078 possible combinations to choose from. This example ignores the fact that different numbers of elements can be combined, not just five, and that they do not have to be combined in equal ratios. For perspective, there are estimated to be 1066 atoms in the Milky Way galaxy. So, in terms of a “big data” challenge, materials development of complex composition alloys represents perhaps the biggest big data paradigm. There is a clear need for a method to narrow the search space to only the most promising candidates for a given application. Intuition and expensive trial and error strategies will not be sufficient for investigating this immense chemical space, and more informed computational methods must be developed and employed.

Our team of nanoengineers in Professor Kenneth Vecchio’s lab at UC San Diego is developing tools for screening large numbers of materials in a rapid fashion. The first step in our work is creating unique identifiers for each material, akin to a fingerprint of the material. In the same way no two fingerprints are alike, every individual material possible can be reduced to a simple but unique set of attributes. These identifiers describe the material composition in a way that supports computation work leveraging a subset of artificial intelligence called machine learning. The machine learning tools learn the underlying science that relates these attributes to various material properties. Typically, machine learning requires enormous initial datasets to learn from before it becomes a useful tool.

However, the method that our team developed is designed around the fact that material development problems frequently have less than 100 data points at the outset. After learning about the initial dataset, the machine learning algorithm suggests new materials with the goal of maximizing performance. Each time the materials suggested by the algorithm are fabricated and tested, this new information is made available to the algorithm, creating a learning loop.

The data-driven method that our team has developed was recently demonstrated for predicting the synthesizability of single crystal structure (e.g. rock-salt structured) carbide ceramic materials containing five metal cations, also known as high entropy carbides. High entropy carbides constitute a subset of the complex concentrated alloys class of materials described previously, as they have the added uniqueness of becoming more stable at increasing temperatures, which is unlike most engineering materials. The researchers focused their study on what are called non-intuitive compositions, in which three of the five metal cations are chromium, molybdenum, and tungsten, none of which form a rock-salt structure at room temperature in a one metal atom to one carbon atom ratio.

The initial dataset contained all available data: 56 high entropy carbide materials with synthesizability calculated by computationally expensive density functional theory (DFT). None of the 56 known compositions contained chromium, one of the three metal cations of interest. While DFT can compute a few compositions per month, the machine learning model was able to learn from the 56 materials and make predictions on 70 new materials in less than one day.

Seven materials, four predicted to succeed and three predicted to fail, were experimentally fabricated and analyzed to assess the validity of the predictions. Rather surprisingly, several five-cation metal carbide compositions were discovered, wherein three of the five cations were chromium, molybdenum, and tungsten—the elements that don’t form the rocksalt monocarbide structure—and yet these compositions were experimentally shown to successfully form the rock-salt structure. Furthermore, all seven experimentally studied compositions resulted in single or multi-crystal structure materials in exact agreement with the machine learning predictions. The ability for the machine learning model to perform exceedingly well in such a non-intuitive chemical space, a composition space which contained no prior data to learn from, further demonstrates the unique strength of this approach. Our team expects the machine learning framework to be a useful tool in the development of other materials such as alloys, battery components, or pharmaceuticals.

This work is published in Nature Partner Journals (npj) Computational Materials, May 1, 2020.

Read the paper here: https://www.nature.com/articles/s41524-020-0317-6.epdf

DOI: 10.1038/s41524-020-0317-6

Dispatches from a pandemic: graduate students create COVID virus simulations

$
0
0

By Daniel Li


As it became clear in late February that COVID-19 was not going anywhere, four UC San Diego graduate students were planning their final project for the Numerical Analysis for Multiscale Biology course, which uses math to simulate biological processes.

The mechanical engineering and bioengineering students—Parker Dow, Cathleen Nguyen, Clara Posner, and Patrick Wall—decided to put their skills to a new use, and build a predictive model analysis that could bridge from the molecular biology of the SARS-CoV-2 virus to the epidemiology of the spread of infection through the population. The team started the three-week project in early March.

“A lot of times, when working on basic cell biology research, it can seem kind of removed from the bigger picture of what’s happening in the world,” Posner said. “But working on this coronavirus project is a lot more motivating since it can help with this current crisis that’s affecting us all.”

The idea to focus the project on COVID-19 was first brought up by Dow. According to Dow, he had started to see new scientific literature related to the novel coronavirus come out and it became increasingly apparent that some of the data could be used for computer modeling.

“I floated the idea to the group because I’d seen in a paper that they got a new structure of the coronavirus binding protein,” Dow said. “Our group started to do a bit more research on it and discovered that the scientific community had been publishing things daily, so we all wanted to take a stab at it.”

Each student focused on a different level of the project: cellular, molecular, and population scale. Wall created an alveolus in the lung with the MCell modeling tool to figure out the virus's rate of spread. Dow analyzed viral binding kinetics using BrownDye software. Posner used Virtual Cell (VCell) to create a transforming growth factor (TGF)-beta signaling induced lung fibrosis model. Nguyen focused on creating a population infection model using Vcell at the population level.

Two of the tools—Browndye and MCell—that the team used to model their systems were developed in-house at UC San Diego. Several local scientists, including UC San Diego Project Scientist Gary Huber and Salk Institute Staff Scientist Tom Bartol, were actively involved and helped guide them through the project. 

“The course instructors went above and beyond,” Wall said. “It was really helpful to reach out to them and ask for their expert knowledge. They also were instrumental in getting our models to run properly.”

This hands-on course is one of seven lab courses offered by the Interfaces Graduate Training Program in Multi-scale Biology that involves students from 11 graduate programs at UC San Diego and is directed by Professor Andrew McCulloch from the Department of Bioengineering.

 “The scientific challenges of addressing the COVID-19 pandemic are so daunting because they span from the scale of the spike protein on the virus, to the cellular and pathophysiological responses of the infected human to the population of the globe. Problems like these require the kinds of novel multi-scale approaches and interdisciplinary teamwork that the Interfaces program was designed to teach and encourage.

According to Wall, one of the challenges when they first started was that the data surrounding COVID-19 was sparse. To tackle this, the team looked at similar viruses, such as SARS, and used data from that to generate initial models. 

“The 2002 SARS virus was also a coronavirus outbreak. These viruses are so similar,” Wall said, “we were able to use a lot of the data that was generated in the mid 2000s to early 2010s on the SARS coronavirus and extrapolate our modeling based off of that.”

Nguyen added that because the coronavirus was evolving in real time, there were a lot of unknowns and the team was forced to make assumptions throughout the project. 

“Everyday you’re receiving new information about the pandemic and want to apply it to the models,” Nguyen said. “You make a lot of assumptions and those assumptions are changing based on new information. You're changing your inputs, your process, and with every simplification you make, you lose some accuracy in the models.”

Nguyen enjoyed how she was able to work together with students of different engineering backgrounds.

“I’m more of a mechanical engineering background, but the rest of my team members have more of a bioengineering background,” Nguyen said. “And the novelty comes when you’re trying to work on a multiscale project with people who have different expertise and skills.”


Alumna combines engineering, medical expertise to alleviate PPE shortage

$
0
0

By Daniel Li


Dr. Aditi Sharma, a UC San Diego bioengineering alumna and resident physician at the UC Irvine dermatology department, is combining her engineering skills and medical expertise to solve one of the ongoing challenges of the COVID-19 pandemic: a shortage of protective masks for healthcare workers. 

Sharma and several colleagues developed a method to fabricate face masks out of discarded surgical tool sterilization wraps, and launched a project that aims to create 10,000 of these masks for healthcare workers. Their project was featured in the Los Angeles Times.

Their mask is made from recycled Halyard H600, a material used for surgical equipment sterilization, with straps made of recycled Gemini surgical wrap material. 

Their repurposed sterilization wrap mask has up to 86.5 percent filtration rate; this is lower than the 95 percent of N95 masks, but more than three times more effective than ordinary cloth masks, which many health care workers have been forced to use due to insufficient personal protective quipment (PPE). Their goal is to be able to reserve N95 masks for medical personnel working directly with known COVID-19 patients.

In just two months, Sharma and her team have made over 2,000 face masks, and are looking to expand the project to the entire state of California and hopefully the rest of the country. 

“We're hoping that ultimately not only will healthcare providers have the masks, but maybe even people in the community can have access to them as well,” Sharma said. “In terms of getting towards that 10,000 goal, I think probably in the next couple of weeks we should be there, between manufacturers in the local community who are willing to help us and volunteer groups who are willing to help.”

Sharma graduated from UC San Diego in 2009 with a degree in biomedical engineering, and then received her medical degree at the Medical College of Virginia. During her time at UC San Diego, Sharma had the opportunity to work at Pfizer as a research assistant and participate in the Amgen Scholars Program over the summer. These two experiences sparked her curiosity in immunology and inspired her to conduct research on biological warfare and bioterrorism under Dr. Anthony Fauci at the National Institutes of Health.
Sharma's masks, made from repurposed sterilization wrap.

After a one-year stint at the NIH, Sharma shifted gears and worked as an engineer at the World Health Organization to improve access to medical devices for low income individuals. She explained that her background in engineering has given her a unique approach to medicine. 

“I think something that is kind of fundamental to engineering is asking, “Is this the most efficient process and how can we improve it?” Sharma said. “I think sometimes in medicine, we accept what is told to us-- that this is how it is. And I find that that engineering side of me is constantly saying, ‘What can we do better?’”

When Sharma came back into the medical field, her main goal was to find a way to integrate the fields of public health, engineering, and medicine in her work; this project has allowed her to do so and help contribute to the fight against COVID-19. Sharma encourages students to take advantage of all the resources that UC San Diego offers and to dream big.  

“What I loved about UC San Diego is there are so many resources,” Sharma said. “I used to go to the Teaching and Learning Commons...and I remember really learning linear algebra very well because I had that extra support system. I am also grateful for applying for those job opportunities that I never thought I would get. I think it set me up for the rest of my career.”


Olivia Graeve's team is "crystal clear" about quantifying crystallinity

$
0
0

UC San Diego engineering professor and materials science pioneer Olivia Graeve’s research team has a new paper out that reports on work that will be used to help materials scientists develop higher quality materials for use in many applications including super-durable solar cells, ultra-hard metals for space exploration, better infrared optical fibers for carrying digital information, and materials for new kinds of biomedical devices like self-expanding stents.

The paper was published by PLOS ONE on June 22, 2020.

A schematic representation of the team’s DSC-based methodology
 for determination of the change of crystallinity and 
crystallinity percentage as a function of temperature.
In this particular paper, the researchers present a new method for calculating the initial crystallinity, change of crystallinity and crystallinity percentage of amorphous metal alloys as a function of temperature. The first author on the paper is Arash Yazdani who is finishing his PhD at UC San Diego in Professor Graeve's lab.

"This is exciting materials science work that will have an impact in the field," said Graeve. “We all live in this world in which materials science plays a role in nearly everything we do. We all benefit from the materials science breakthroughs yet to be developed. If you think you're interested in this kind of work, pursue it. Don't leave it up to others to do the work. There is a place for everyone in materials science.”

The methods presented in this paper are particularly interesting because the behavior of amorphous materials for use in exciting applications often depends on the partial crystalline nature of the materials. Creating materials with properties such as ultra-hardness or super-resistance to corroding often depends on being able to characterize and control crystallinity, and that's what this research is working toward.

Paper info
"A Method to Quantify Crystallinity in Amorphous Metal Alloys:  A Differential Scanning Calorimetry Study," in PLOS.

Authors: Arash Yazdani (1), Günther W.H. Höhne (2), Scott T. Misture (3), Olivia A. Graeve (4)

1  Department of Mechanical and Aerospace Engineering
University of California, San Diego
9500 Gilman Drive – MC 0411
La Jolla, CA 92093-0411, USA

2  University of Ulm
Helmholtzstraße 16, 89081 Ulm, Germany

3  Kazuo Inamori School of Engineering
Alfred University
2 Pine Street, Alfred, NY 14802, USA

Comic-Con@Home features UC San Diego scientists

$
0
0
Saura Naderi, outreach director at the Halıcıoğlu Data
Science Institute
Comic-Con 2020 may look a little different this year, coming to you from the comfort of your own home. The annual San Diego comic and pop culture convention is going virtual due to COVID-19, but the good news is more than 350 panels will be available for free online, no waiting overnight in line required.

Comic-Con@Home will feature seven UC San Diego speakers during the five-day virtual event running from July 22 to July 26.

Tune in on Thursday, July 23 from 3-4pm for The Science of Back to the Future, where the creative teams from "Back to the Future" and "Transformers" talk to local scientists about how they came up with their vision for each storyline and how science would play a part in these movies. UC San Diego panelists include engineer and roboticist Saura Naderi, the outreach director at the Halıcıoğlu Data Science Institute and an alumna of the Jacobs School of Engineering.

Marine biologist Ben Frable will speak on
the More Science in Your Fiction panel.
Up next is The League of Extraordinary Scientists and Engineers: More Science in Your Fiction on Thursday, July 23 from 6-7pm. Scientists and engineers will discuss how both comic books and science fiction push them to dive deeper into the unknown. UC San Diego panelists include Ben Frable, a marine biologist at Scripps Institution of Oceanography, and Angela Zoumplis, an extremophile explorer at Scripps Institution of Oceanography.

You can catch Sinless, Fearless, Ruthless - A look at science and social science in a YA sci-fi book Friday, July 25 at 4pm. Learn about the social sciences and the idea of morality behind Eye of the Beholder by author Sarah Tarkoff. UC San Diego panelists include Samantha Russman, a PhD student at the Jacobs School of Engineering.

The Fleet Science Center Celebrates: Agents of S.H.I.E.L.D. - The Stories and Science of Androids, Space Travel and Aliens will air on Saturday, July 25 from 3-4pm. Celebrate the seven seasons of Marvel's Agents of S.H.I.E.L.D. and hear executive producers, actors, and writers discuss how accurate the science in the series was with local scientists. UC San Diego panelists include Virginia De Sa, a professor in the Cognitive Science Department; Troy Sandberg, a bioengineering PhD student; and Melissa Miller, a scientist and science writer at the Scripps Institution of Oceanography. 

To learn more about Comic-Con 2020 events, visit their website.

Using nanotechnology for more targeted, safer pesticide delivery

$
0
0

Nanoengineers at UC San Diego will develop more targeted ways to apply pesticides to food crops using plant virus nanocarriers, thanks to a $490,000 grant from the Department of Agriculture’s National Institute of Food and Agriculture. This could lead to a reduction in the amount of pesticide used, and therefore less chemical accumulation from pesticides in our food, drinking water and environment.

Engineers are using a plant virus as a nanocarrier
for more targeted pesticide delivery to protect crops
like tomatoes from root-eating nematodes. 
Pesticides are used extensively in food production to ensure crop health and yield. While these toxic chemicals can keep bugs, weeds, parasites, fungi and rodents from damaging crops, they also accumulate in the environment, in the crops themselves, and even in drinking water supplies, leading to adverse health effects for humans.

Nanoengineers led by Professor Nicole Steinmetz at the Jacobs School of Engineering plan to use a p Professor Nicole Steinmetz at the Jacob lant virus as a nanocarrier to more precisely deliver pesticide payloads when and where needed, resulting in less pesticide required, and less bioaccumulation. The team will study and use the tobacco mild green mosaic virus (TMGMV), which they’ve previously shown can carry cargo down to 30 centimeters below the soil surface, much deeper than traditional synthetic nanoparticles which travel 8 to 12 centimeters deep.

Their first target for these nanoparticles is a type of roundworm called a nematode, which eats plant roots, destroying the plant in the process. By being able to deliver the pesticide deeper into the plant’s root system, the researchers believe their plant virus nanoparticles will be more effective in stopping nematodes than synthetic pesticide delivery particles.

“In this project we focus on pesticides to target roundworms that infect the roots of crops, using our plant virus nanotechnology,” said Steinmetz.  “More specifically we will produce a library of nanoparticles derived from harmless plant viruses to answer how size, shape, and materials properties affect the nanocarriers interactions with soil and plants. Understanding these fundamental questions is expected to make an impact on next-generation pesticides, literally attacking the problem at its roots.”

Since plant viruses like TMGMV can be engineered to a custom size and certain physical properties, the researchers will study the effectiveness of plant virus nanocarriers of different sizes, shapes, and surface chemistries.  They’ll create a library of nanomaterials derived from TMGMV, detailing the nanocarriers’ pesticide delivery efficacy.

“We’ve seen that in medicine, changing the shape of a nanoparticle delivering a specific drug can lead to advantages such as enhanced diffusion and tissue penetration,” Steinmetz said. “We hypothesize that this is true for pesticide delivery as well, and will investigate the effect of nanocarrier size and shape on pesticide application effectiveness.”

The tobacco mild green mosaic virus is non-infectious to most plants, but the researchers will also create inactivation protocols to ensure it’s safe to use with any desired plant.  The virus is non-infectious in humans.

Steinmetz will collaborate with researchers Erin Rosskopf and Jason Hong at the USDA Agricultural Research Service, who will test candidate materials on nematode-infested crops.

NanoEngineer earns Dissertation Year Fellowship

$
0
0

Jacobs School of Engineering nanoengineering PhD student Qiaowan Chang has been awarded a Dissertation Year Fellowship funded by the Marye Anne Fox Endowed Fellowship Fund. This fellowship is awarded to students who demonstrate highly distinguished academic records, and provides recipients with a $22,000 stipend for their dissertation year, plus tuition and fees.

Qiaowan Chang
We spoke with Chang about her research, her accomplishments at UC San Diego, and her future goals.

Q: How did it feel to receive this award?
A: I feel very excited and lucky to receive this award. It's not only a recognition of my current research, but also encouragement for my future work. And thanks to my supervisor, Professor Zheng Chen, for the instruction, the help during my PhD studies, and for offering lots of opportunities to collaborate with other groups.

Q: Tell us about the research you’ve been conducting in Professor Zheng Chen's lab.
A: My research is mainly focused on designing electrocatalysts at atomic scale through fundamental understanding of their elementary processes in several key electrocatalytic applications and reactions, including decentralized hydrogen peroxide (H2O2) production (2-electron oxygen reduction reaction), direct liquid fuel cells (ethanol oxidation reaction), and carbon dioxide (CO2) conversion (carbon dioxide reduction reaction).

Q:  What are some of the applications of your research?
A: For the decentralized hydrogen peroxide (H2O2) production (2-electron oxygen reduction reaction), H2O2 is one of the most useful chemicals across the entire chemical industry. For the traditional production method, the transportation and storage of H2O2 are unresolved problems due to its chemical instability. Only a dilute H2O2 solution is needed for most applications. For example, 3% H2O2 solution is used as the disinfectant to fight the COVID-19 virus. My research is to develop a green and user-friendly method to produce H2O2 on-site from the two-electron oxygen reduction reaction.

For the direct ethanol fuel cells (ethanol oxidation reaction), it could be used in electric vehicles. In direct ethanol fuel cells, ethanol is oxidized by oxygen to generate electricity. Ethanol is a green and sustainable fuel that can be produced from agriculture feedstocks. Thus, direct ethanol fuel cells are environmentally-friendly techniques for powering vehicles.

For the carbon dioxide (CO2) conversion (carbon dioxide reduction reaction), electrochemical technology could reutilize and convert CO2 to other important chemicals to mitigate climate change and ocean acidification caused by the increased CO2 level. 

Q: Tell us about your dissertation topic.
A: My dissertation topic is to explore novel strategies to design electrocatalysts at atomic scale through fundamental understanding of their elementary processes in the above applications and reactions. The key to make such electrochemical reactions happen is the electrocatalysts. The thesis mainly discusses several strategies, including to tune the local chemical coordination between atomic catalyst clusters (metal) and their support materials (defect carbons) using a composite approach to achieve the synergistic effect of “1+1>2” (that is, Pd clusters deposited on the oxidized carbon nanotubes) for decentralized hydrogen peroxide (H2O2) production (2-electron oxygen reduction reaction), and to control the morphology and structure of the electrocatalyst (that is, the core-shell cubic-shaped electrocatalysts: 10 nm of platinum (Pt) nanocubes as a core and a ~0.2 nm thick of iridium (Ir) layer as a shell) in direct ethanol fuel cells (DEFCs).

Q: What are your future goals once you earn your PhD?
A: I will do a postdoc first to finish my remaining projects. Then, I will try to pursue a faculty position in academia, or a researcher/scientist position in industry.

Viewing all 721 articles
Browse latest View live