Quantcast
Channel: UC San Diego Jacobs School of Engineering blog
Viewing all 721 articles
Browse latest View live

NanoDay 2018

$
0
0


Nanome had demos of their VR tool at NanoDay.
 Nathan Tong, a fourth-year nanoengineering student at the UC San Diego Jacobs School of Engineering, was tired of getting the same question over and over again: what is nanoengineering?

“I wanted to raise awareness about what the major is, what we do at UC San Diego, and also the potential future that could happen using nanoengineering,” Tong said.

So he and the Nanoengineering and Technology Society (NETS)at UC San Diego resurrected NanoDay, a celebration of all things nanoengineering that hadn’t been held in at least the last four years. The student organization plans to make the event an annual occurrence to highlight all that’s going on in the department, and provide undergraduate students with tangible ideas of what a career in nanoengineering could look like.

Professors Darren Lipomi and Sheng Xu shared their insight.
UC San Diego was the first in the nation to create an official academic Department of Nanoengineering in 2007 and began offering it as an undergraduate degree program in fall 2010. In its simplest form, nanoengineering draws on all disciplines of engineering to create devices at the nano, or sub-micron, scale. It’s an interdisciplinary science relating biochemistry, engineering and physics to create structures smaller than bacteria with complex functions.

As Darren Lipomi, a professor of nanoengineering and one of four professors on a panel about academic life in nanoegineering put it, nanoengineering principles underpin all of the concepts and phenomena we understand on a larger scale.

“I think the challenge is to identify something that’s not nanoengineering,” Lipomi said.

Professors David Fenning and Shaochen Chen answered
questions about their career path and gave advice to students.
He was joined on the panel by nanoengineering professors Shaochen Chen, David Fenning and Sheng Xu.

For a taste of post-grad life in industry, students heard from a panel of speakers from large companies like General Atomics, to small startups like GrollTex, and nanoparticle manufacturer nanoComposix, all of which have nanoengineering-specific positions.

Joseph Wang, chair of the Department of Nanoengineering, gave opening remarks at NanoDay about the wide scope of research underway at UC San Diego—from needle-free tattoo-like glucose sensors, to micromotors for drug delivery, stretchable batteries and flexible ultrasound patches, it’s a diverse field.

Representatives from General Atomics and Grolltex
 shared their perspectives on nanoengineering in industry.
Nanoengineering alumnus Steve McCloskey, who founded virtual reality company Nanome, shared his post-grad story and advice with students. Nanome allows users to experience and manipulate atoms and molecules in a 3D environment, making it easier to visualize and design new medicines or chemicals, for example. The startup was one of seven companies honored with a Best of Show award at the Bio-IT World conference.









What happens when two roboticists, one engineer and one holographic doctor are together on a panel?

$
0
0
Actor Robert Picardo, who played The Doctor in Star Trek Voyager. 
We found out Saturday, when when three of our professors were on the same panel at the holographic doctor from Star Trek Voyager, aka actor Robert Picardo. They discussed the future of healthcare robotics and AI. It was all that of "The Future of Medicine," an event hosted by the Clarke Center for Human Imagination, June 2 here on campus. Below is a Twitter thread with some of the event's highlights.










From left: computer science professors Henrik Christensen and Laurel Riek.
Christensen is the director of the Contextual Robotics Institute at UC San Diego. 






Ramesh Rao, director of the Qualcomm Institute at UC San Diego, is also a professor
in the Department of Electrical and Computer Engineering. 







A model of the original tricoder used in the Star Trek series. 

Drones, medical devices and carbon nanotube fabrics: seniors show off their capstone projects

$
0
0
From medical devices to drones, a flying cell phone coverage platform and a detachable intubation device, senior mechanical, aerospace, and environmental engineering students exhibited their capstone projects Thursday at the Jacobs School of Engineering. The varied projects were completed in just one quarter, but reflected years of hard work. 
Students worked in teams on projects proposed by a sponsor facing a real-world challenge. Seniors said the capstone class taught them lessons about collaboration and documenting their work that will transfer well to their next step, be it an industry job or furthering their education.
Here are just a few examples of the tremendous effort put forth by these graduating students.

Self-generated Lower Body Negative Pressure Device for Deep-space Missions
This team of students has designed and built a device that generates negative pressure in the lower half of the body and allows blood to shift toward the lower extremities. The device doesn’t need an external pump and power source.  The proposal for their device has been recently accepted by NASA. The goal is to eventually send a version of the device to the International Space Station, where it will help control astronaut blood flow. That’s because in Earth gravity, blood pools in the lower body by itself. But when you’re in space, in microgravity, all this blood shifts toward the upper body. Eventually, the body adapts to microgravity, but then astronauts are more likely to feel dizzy and have trouble standing when they get back to earth. So astronauts need to spend some time in a device like the one the students devised.
Team: Joel Bickel, Ross McDonald, Kavin Tangtartharakul, Richard Valle

Sponsors: Dr. Alan Hargens and Dr. Lonnie Petersen and the UC San Diego Department of Orthopedic Surgery

Collapsible Shipping Container

When UTC Aerospace ships thrust reversers—a large piece of equipment that enables aircraft to decelerate-- they also have to pay to ship the very large containers back empty. These containers can be as large as 14’ x 10’ x 12’, so it’s not cheap. Students in the MAE156 Fundamental Principles of Mechanical Design course spent a quarter designing an alternative solution: a collapsible shipping container.

Their container reduces the volume of the original container being shipped back by 75 percent via quick-release pins. The pins don’t require tools and are attached to the box, so no screws or bolts will get lost in the process. With a few simple pulls, employees can fold the shipping container down significantly, reducing the costs of shipping back the empty container.
Team: Robbie Corpuz, Joey Sun, Hyunwoo (Paul) Park, Steven Salazar, Yu (Alexis) Su
Sponsors: UTC Aerospace Systems





Human- powered medical devices

Home health care services in the U.S. have been growing alongside the increasing elderly population, but many medical devices today require electricity or batteries. Undergraduate students designed a human-powered O2 Scope that combines an otoscope to check inside a patient’s ears with a opthalmoscope to check eyes. These are normally two separate devices, but the students combined them into one, using LED lights to check the ear and eye.
The O2 Scope is powered by a linear alternator which creates an induced electromagnetic force: the user just needs to shake it back and forth for five seconds to power the LED at max brightness for 30 seconds, which is long enough for an examination.

Team: Charmaine Castillo, Andrew Chen, Ariyan Rahmanian, Christopher Wiggins
Sponsors: Khai Nguyen, MD, Clinical Services Chief of Geriatrics

Project Laputa—A Flying Base Station for Disaster Recovery Scenarios


A team of engineering students designed, built and tested a flying platform that can be used to provide cell phone coverage in areas hit by a disaster. The main goal was to build an unmanned flying vehicle that can stay aloft for hours, as opposed to the 30 minutes that most can fly. Students built a cylindrical vehicle with a rounded lip, inspired by a machine gunnery platform used in WWII. It’s controlled by four rudders, which are each independently controlled by a servo motor. By the way, the project’s name is a reference to a flying island described in Gulliver’s Travels. It also appears in the movie “Castle in the Sky” by Hayao Miyazaki.
Team: Raymond Silver, Chengta (Dale) Lei, Charles Knight, Brynn Hall
Sponsor Professor Xinyu Zhang, Department of Electrical and Computer Engineering, UC San Diego

Shellfish Biosensor

Shellfish like oysters close their shells when they’re stressed. In order to determine when and how stressed they are, students designed a biosensor system using a magnet to wirelessly monitor when shellfish’s shell is open, and for how long and how wide.

By laying existing data such as oxygen level and temperature on top of this data, researchers could find correlations between when the organisms are stressed and what environmental factors may be contributing to that.

A magnet is attached to one side of the shell with the sensor on the other. Voltage values will change as the shell opens and the magnet gets farther from the sensor, showing how wide the shell is open, and for how long.
Team: Adrian Urrea, Claudio Coleman, Emma Schoenthal, Hsing-Han Chung, Marika Hale
Sponsor: Dr. Sarah Giddings and Dr. Jeff Crooks

Pelvic Girdle


When a woman has cervical cancer, she may receive external radiation, as well as brachytherapy, or radiation from inside the pelvis, which is an effective way to apply targeted radiation.

To do this today, the patient sits or lies on a heavy wooden board equipped with an arm that has the radiation source on it, which is inserted into her vagina. She sits there for an average of three hours, but has to be careful not to move, or the radiation won’t be applied to the correct area. This is uncomfortable and can make the procedure less effective.

Students designed a pelvic girdle that attaches to the patient, so the arm with radiation is attached to them and moves with them. This makes it less uncomfortable and more precise, since the device will move with the patient.

The team of students was able to use their device in two patient trials, and received positive feedback. They plan to continue developing the device over the summer.

Team: Megan Elliott, Keenan Finney, Cameron Hutton, Shichen Li
Sponsors: Dr. Jyoti Mayadev and UC San Diego Moores Cancer Research Center


Anchor for Shoulder Instability


This team of students designed and built a new type of anchor for shoulder surgery that is made of rigid components but is flexible. The anchor would eventually be used in surgery to reattach cartilage to shoulder bones. The students used CAD and conducted fine element analysis on their designs. They iterated through various 3D printed prototypes before machining the final prototypes from titanium. Further steps are required before the anchors can be used in the clinic.
Team: Bryan Brenna, Delta Caraulia, Darren Deng, Helen Tat
Sponsors: Sameer Shah, associate professor, Departments of Orthopaedic Surgery and Bioengineering and Dr. Adam Hsieh, UC San Diego School of Medicine


Portable deformation testing using carbon nanotube fabrics
Students designed a portable device to test deformities in a variety of materials using carbon nanotube fabric. This thin fabric can be used to gauge the strain of a material using a process called electrical impedence tomography. This is done today on a desktop computer in a lab, and isn’t portable.

The mobile device designed by a team of undergraduate students enables this testing in a variety of situations—for example, deployed warfighters could use it to ensure their protective clothing is still effective and hasn’t been critically damaged during an event; structural engineers could embed the fabric in concrete or bridges, for example, and use the portable device to quickly monitor the amount of damage done after an earthquake; the device could detect if a prosthetic limb was implanted improperly or deformed and is applying too much pressure on the user at a certain point.
Team:Aaron Gunn, Jacob Rutheiser, Maxwell Sun
Sponsor: Ken Loh, Ph.D., Associate Professor of Structural Engineering at UC San Diego and director of the Active, Responsive, Multifunctional, and Ordered-materials Research (ARMOR) Laboratory

Boomerang Gyroscope Demonstration Device
How does a boomerang fly? The answer to this question is surprisingly complex and involves precession—the process which causes the boomerang to always come back—and nutation—the process that causes the boomerang to tilt from the vertical to the horizontal. This team of students built a gyroscope that models both precession and nutation of a boomerang in flight. The device will be used for outreach and education.  
Team: Chuanyue Xia, Akinari Ohashi, Steven Teixeira, Kangchun Wang
Sponsor: Prasad Gudem

Cough simulation apparatus
Mechcanical and aerospace engineering students were tasked with creating a breathalyzer that can detect pathogens Austin Swafford, Director of Research for the UC San Diego Center for Microbiome Innovation.
“After talking with Dr. Swafford, we realized that there are no controlled ways to test a breathalyzer for pathogens—we can’t just ingest them for testing purposes—so we shifted the focus of our project to a cough simulator,”said student Mandy Nichols.
The device the students built looks mostly like a garden hose. To test it, a mixture of sugar and water is loaded into one end and spewed out the other to simulate a cough.
“The ‘cough’ is sprayed at a glucose strip,” said Kang. “We can measure the size of the droplet under a microscope and the concentration on the glucose strip.”
The idea is to provide laboratory researchers with a safe and effective way to test pathogen breathalyzers.
Team:Donghyun Seo, Ziliang Zhang, Emilee Kang, Mandy Nichols, Gaoge Xu, Dingran Lu
Sponsor: Austin Swafford

Detachable Intubation Device

If a patient is under anesthesia and needs assistance breathing, a medical professional will place an endotracheal tube in their airway in order to connect them to a ventilator. The endotracheal tube itself gets placed over an insertion tube that contains a bronchoscope which lets the nurse or doctor see inside the airways to navigate the tube where it eneds to go. Once it’s in place, the endotracheal tube is slid down into place, and the insertion tube is removed.
However, in some cases the pateint’s trachea is too small, and the insertion tube and endotracheal tube both need to be removed to replace the existing tube with a smaller endotracheal tube. Students designed a detachable bronchoscope that would allow the insertion tube to remain inside the patient while it’s disconnected from the bronchoscope for a smaller endotracheal tube to be swapped in. This means the tube only has to be placed once, instead of potentially multiple times.
Team: Mark Olesco, Rogelio De Guzman, Fengyuan Hu, Matthew Kohanfars
Sponsor: Frank Talke and Jaspreet Somal

B.J. (Byungji) Kim: Materials Science and Engineering graduate student

$
0
0
B.J. (Byungji) Kim is the graduate student who was recognized, in the month of May, by the Jacobs Graduate Student Council at the UC San Diego Jacobs School of Engineering.

B.J. Kim is a PhD candidate in the Material Science and Engineering Program at UC San Diego, working with professor Micheal J. Sailor.

A major portion of her Ph.D. research is focused on developing an immunogene therapeutic strategy to combat against a wide range of bacterial infections. By enhancing the body's existing immune system to fight against infections more efficiently, she aims to minimize the need to develop new antibiotics for each type of bacteria.

B.J. Kim's outstanding contributions have led to publications in leading scientific journals, such as Nature Biomedical Engineering and Nature Communications.

Nature Communications paper:
Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus




B.J. Kim has presented her work at conferences with great reception. At the 2017 Jacobs School of Engineering Research Expo, she was awarded the Katie Osterday Best Poster Award for Mechanical and Aerospace Engineering and the Lea Rudee Outstanding Poster Award (1st out of over 200 posters). Read the press release here.

At the 2018 Porous Semiconductors - Science and Technology (PSST) held in France, she was invited to give a keynote talk, and received the Lehmann Prize. Moreover, B.J. Kim led the writing of and successfully obtained over $4 million from the National Institute of Health to further her project on bacterial infections

B.J. Kim on LinkedIn



Using DFT calculations to design stronger airplane engine materials

$
0
0
Hui Zheng's research aims to make airplanes safer in the future. Zheng is a nanoengineering Ph.D. student in Professor Shyue Ping Ong's Materials Virtual Lab at UC San Diego. Using DFT calculations, Zheng is finding ways to re-engineer materials -- such as those found in the fan blades of airplane engines -- to make them stronger and resistant to cracking.

Zheng describes her project in this video, taken at NanoXpo 2018:

Poster title: "Role of Zr in Strengthening MoSi2 Grain Boundaries from DFT Calculations"

NanoXpo is an annual event held by the Graduate Society of Nanoengineers to showcase graduate research in the UC San Diego Department of NanoEngineering.

Adam Feist: Harnessing Evolution as a Tool

$
0
0

Adam Feist, a UC San Diego bioengineering alumnus (PhD) and current Project Scientist, has been awarded the Jay Bailey Young Investigator Award from the Society for Biological Engineering. The journal Metabolic Engineering sponsored the 2018 award, and they put together a nice story about Adam Feist and his work in the Systems Biology Research Group run by UC San Diego bioengineering professor Bernhard Palsson.  

One of the things Feist works on, and discusses in the article, is harnessing evolution as a tool.

Dr. Feist supervises and leads the design, development and implementation of over $1 million worth of equipment for adaptive laboratory evolution studies. ‘The evolution platforms we have are actually tangible things, machines working in the lab, doing different tasks,’ he said. ‘It’s fascinating, instead of modeling, where we predict what we want to engineer, we turn that on its head and ask the cells to figure it out themselves. It’s eye-opening that the cells can do this.’”

Feist is also Senior Researcher and Group Leader at the Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark (DTU).


Clip from NanoXpo 2018: Rishi Kumar

$
0
0
How does water play a role in degrading a solar cell? Rishi Kumar is finding answers to that question through his research. His research in the lab of Professor David Fenning aims to understand how water causes solar cells to lose efficiency. Kumar is developing a method to measure exactly how much water is inside a solar cell without taking it apart.

Kumar describes his project in this video, taken at NanoXpo 2018 this past May:



Poster title: "Understanding & Overcoming Water-Induced Interfacial Degradation in Si Modules"

NanoXpo is an annual event held by the Graduate Society of Nanoengineers to showcase graduate research in the UC San Diego Department of NanoEngineering.

Bioengineers reflect on USA Science and Engineering Festival

$
0
0

By Kritin Karkare

UC San Diego bioengineering students at the USA Science and
Engineering Festival in Washington, D.C.

In early April, Washington, D.C. is flooded with science exhibitors, enthusiastic parents, children, and all things science and engineering at the annual United States of America Science and Engineering Festival (USASEF), which drew an estimated 370,000 visitors this year. USASEF is put on by Science Spark, a non-profit science outreach organization that also hosts the San Diego Festival of Science and Engineering; the festival is sponsored by organizations such as Lockheed Martin, the Department of Defense’s STEM program, NASA, the U.S. Air Force, the National Institutes of Health, the National Science Foundation and more.

This year, eight members from the UC San Diego Bioengineering Graduate Society (BEGS) and four members from the undergraduate Biomedical Engineering Society (BMES) flew to D.C. to engage the next generation of scientists and engineers with their model of an extracellular matrix, and learn more about science and engineering outreach on a national scale. The following are excerpts from interviews done with Jacobs School of Engineering undergraduates Julie Yip, Taylor Martin, Reo Yoo and Katherine Nguyen, and BEGS outreach vice president Julia Hardy. They’ve been lightly edited for length and clarity.

Bioengineers teach festival attendees about the extracellular
matrix and drug/fluorescent targeting.


Q: How did you get interested in outreach?

Katherine Nguyen:  I come from a Vietnamese community and a lot of what greatly affects the decisions for what we do is that our parents lived through a war and came over to the U.S. to try to live life and survive. A lot of my life I've been pushed to do something that will get me money. But growing up in America, you can do whatever you want! It felt very different for me. During my senior year of high school I was dealing with the struggle to figure out what major I should choose. I didn't have any clue, but I had an older mentor who also came from Vietnam. She told me do whatever you want to do: if you want to be an engineer, you can be an engineer. I realized that sometimes people only need that one ‘yes’ to push them to do great things. I wanted to relay that same sentiment and tell young children you can do engineering, even if you’re not sure yet that you’ll be successful at it. I wanted to be that one ‘yes.’

Julia Hardy: It was pretty natural for me, I couldn't imagine not doing it. I was involved in a lot of community service work and I got into engineering at the University of Illinois, Urbana-Champaign. I saw in high school how I was treated when I said I was going to go into engineering and I saw this confused look on peoples’ faces. They see this athlete who's outgoing, going into engineering and think,‘Why would you want to do that?’ I knew I wanted to do engineering since I was in seventh grade. Why wouldn't I want to do that? I knew that by talking about it I could encourage other girls in my grade and girls younger than me that I mentored in high school to go into engineering. I wanted to continue spreading that word and show girls that they could do whatever they want, especially engineering because they may feel it's not cool to be into science and engineering.

Bioengineering students at their booth at USASEF
What did you expect going in to the USASEF trip, and what was it like in reality?

Taylor Martin: The BEGS president told me it was going to be big. I was like okay, it's going to be bigger than SDFSE.
Katherine Nguyen: That was an understatement.
Taylor Martin: It was huge. There was a flight simulator - you could put 10 people in this little pod and it would move around to simulate an army aircraft. There were multiple convention rooms.
Reo Yoo: Because of how the convention center was setup, there was even an underground component.
Katherine: There was an upstairs too.
Taylor: You'd see at the start of every day this mess of people coming down the escalator. The other thing I hadn't really thought about was the diversity of booths. There were Army, Navy and defense booths plus engineering companies, university labs— so many different things.
Katherine:  All these things were really enjoyable. USASEF is mostly geared toward children, but because of how big the scale was they were able to accommodate for a lot of people. Johns Hopkins University brought a motor so that you could build your own battery motor. It was really fun for college students and parents to go enjoy science as well.
Reo: For me, it really changed the perspective of SDFSE. I feel like when we go as UCSD, we're such a big deal in San Diego. When we went to USASEF, we were this tiny booth— we got some foot traffic, but there was so much more.

What was your favorite memory?

Julie Yip: I had a good conversation with a sophomore in high school. She was really interested in organic chemistry and liked programming and said that she wanted more experience programming.  I talked to her for about half an hour to forty-five minutes just about what she could do to get more experience, trying to motivate her and talking to her. She was cool and passionate.

Katherine Nguyen: There are so many stories about how cute or smart they are. This group of girls asked us some good questions.  I asked them if they were really interested in science.  And they said 'Oh yeah, we have our own booth where we show experiments to people.’ This was a group of three sisters, the oldest was maybe 13, the second was around 10, the third around 8. I was blown away.

Taylor Martin: Their mom was there and they had shirts.  That was so cool.  These girls had taken so much interest in science and were willing to do something that I would have been terrified to do at that age, acting as an authority at this big giant festival. They were so confident and involved.

Reo Yoo: It’s nerve-wracking. It’s not just kids there. There are professors and doctors who are there to present.

Julia Hardy:  My favorite experience at the festival itself was a group of around 15 six-year olds that came to our booth. They were like ’Science!’ They were so excited about science.  One kid was crying that he couldn't touch our demo. He was so sad that he couldn't interact with the demo, since there were too many people in front of it. So we passed it around and he finally got to touch it. It was the little kids that get so excited. That’s what we need to nurture. Give kids the world and they'll do amazing things with it.


2018 John Dawson Award for Excellence in Plasma Physics Research

$
0
0
Richard A. Moyera Research Scientist at the UC San Diego Center for Energy Research, is one of three people who have been awarded the 2018 John Dawson Award for Excellence in Plasma Physics Research from the American Physical Society (APS). The other two awardees are Todd E. Evans of General Atomics and Max E. Fenstermacher of Lawrence Livermore National Laboratory
The citation for their award:
"For the first experimental demonstration of the stabilization of edge localized modes in high-confinement diverted discharges by application of very small edge-resonant magnetic perturbations, leading to the adoption of suppression coils in the ITER design."
Richard A. Moyer is also a senior lecturer of mechanical and aerospace engineering at the UC San Diego Jacobs School of Engineering. His research focuses on understanding and controlling transients in tokamak plasmas that can limit the performance or damage the device, with a goal of developing actuators to suppress or mitigate the consequences of these events
The 2018 John Dawson Award is based in part on research done at DIII-D, a U.S. Department of Energy user facility operated by General Atomics in San Diego. Read more about the award in the General Atomics press release.

Bottling the Sun

$
0
0
by Andy Zhao


As a Ph.D. student in Materials Science, I spend my days in lab similar to how Justin Timberlake spends his days in the studiopondering the intricacies of solar thermal energy storage. Here is Justin on the mechanics of how a solar thermal power plant works in his song Mirrors:

            And now it’s clear as this promise
            That we’re making two reflections into one
            ‘Cause it’s like you’re my mirror

In a solar thermal power plant, mirrors are used to reflect and concentrate sunlight to heat up a storage material. I like to think of it like a gigantic thermos. In the morning, you fill up your thermos with hot coffee, and whenever you need a boost in energy, the hot coffee is waiting for you. Here is the thermos outside of Las Vegas that powers 75,000 homes all day and night:


Crescent Dunes Solar Energy Plant. Photos courtesy of Solar Reserve
Like I saidGIGANTIC. This plant outside Las Vegas came online in 2015 and is the current state of the art in grid-level thermal energy storage. It works by first pumping up nitrate salts to the top of the tower. There, the concentrated sunlight heats the salts up to a blistering 550 C (1,022 F). The hot molten salts are then pumped down into storage tanks, awaiting the sun’s departure to ignite the lights of Vegas (actually the suburban areas off The Strip, but igniting suburban lights doesn’t sound as hot).

Solar thermal power plants typically use nitrate salts because they have extremely high heat capacities, which means they can store loads of energy in a small volume. Also, mixtures of nitrates have low melting points, making them easy to melt and pump around. And because nitrates are stable up to 550 C, they can efficiently convert heat to electricity. Above this temperature, nitrates break down into other chemicals and lose their energy storage abilities.

That’s basically how solar thermal power plants work. Interestingly, the technology has been criticized for killing a bunch of birds accidentally caught in the mirrors’ crossfire. But there is one bird in particular that energy storage has actually been aiming to take downthe Duck.


To explain our Duck problem (I promise there will be more pictures of ducks soon), first let me show you a graph depicting how much energy the entire state of California used on July 4, 2018,where zero on the x-axis signifies the start of the day at midnight:


And here is how much of that energy was provided by clean and renewable energy, mostly from solar (yellow line) and wind (blue line):


Now, if you subtract the energy provided by solar and wind from the total demand, you obtain the net demand trend, better known in the energy community as the fabled “Duck Curve”:


I know what you’re thinking because I thought the same thing when I first saw it—“Where is the duck?!” Let me help you with my phenomenal Photoshop skills:


I don’t know whose bright idea it was to name this the Duck Curve, but the Duck signifies the energy provided by natural gas and other fossil fuels. As California builds more solar panels and wind turbines, the Duck becomes smaller and smaller.

Solar panels are widely thought of as the silver bullet that will kill the big bad fossil fuel industry, represented here as the “Mighty Duck.” It makes sense since there is enough sunlight that strikes the Earth every 2 hours to power the world for an entire year. But there is a persisting problemthe sun sets every night. Hurling more solar panels at the problem does not kill the Duck, it just dodges the incoming projectiles by stretching its creepy neck, lingering through the night. #DuckDodgers#MightyDucks


To successfully cut off the Duck’s head, we need a way to store excess solar energy during the day so we can use it at night. Enter my (and Justin Timberlake’s) favorite technologysolar thermal energy storage. Solar thermal power plants, similar to the one outside Las Vegas, are currently under construction around the world and are expected to be cost competitive with natural gas. Grid level batteries are also being heavily researched and developed, but they are still much more expensive than solar thermal energy storage.

Scientists and engineers are exploring new materials other than nitrates that could increase solar thermal energy’s operating temperature, energy density and storage time, which could further decrease the cost of energy storage. For example, metal fluorides are being studied for their ability to store energy as latent heatthe energy it takes to change a material from one phase to another. To put latent heat into context, let’s look at the energy you can extract from one liter of liquid water before turning it into ice. When you cool water to exactly its freezing point (0 C), it will remain a liquid. You can squeeze out an additional 333,550 joules of energy before it transforms into iceenough to power a 60 Watt lightbulb for one and a half hours. In comparison, fluorides have twice this latent heat and can be used at much higher temperatures than water.

Researchers are also studying thermochemical energy storage to increase the energy density and storage time of solar thermal power plants. In this process, concentrated sunlight heats up a chemical, driving a reaction to create fuel that stores the thermal energy as chemical potential energy. When the energy is needed, the chemical reaction is reversed. The chemical fuels that drive this reaction retain the sun’s energy much longer and more densely than either nitrates or fluorides.

I am currently working on a project in collaboration with Los Alamos National Laboratory that uses metal sulfides as a potential thermochemical storage material. We are designing and building prototypes of reactors that heat up metal sulfides to separate them into their metal and sulfur constituents to store energy. When this energy is needed, sulfur and metal are recombined to cause an extremely exothermic reaction. At UC San Diego, we are also developing new techniques to understand how thermal storage materials (nitrates, fluorides and sulfides) transport and store heat at such high temperatures.

While next generation solar thermal power plants that run on latent heat or thermochemical energy are far from commercialization, solar thermal plants that run on nitrate salts have already begun competing with fossil fuels around the world. And as California begins its journey towards 50 percent clean and renewable energy by 2030, solar thermal energy storage will play a key role in eating the Duck.

Personally, my preferred way to deal with a duck is dominating the tea-smoked duck at VillageNorth restaurant in San Diego.

Tissue engineering at UC San Diego: a summer to remember

$
0
0

This summer, there is a group of about 20 high school students who are immersed in tissue engineering and regenerative medicine at UC San Diego. The students are part of the state-wide COSMOS program, which is a four-week, sleep-in-the-dorms, engineering-science-and-technology camp for high school students.

COSMOS stands for California State Summer School in Mathematics and Science, and at UC San Diego, COSMOS is run by the Jacobs School of Engineering. COSMOS students attend clusters – like tissue engineering and regenerative medicine – that are designed to introduce students to STEM subjects not traditionally offered in high school.

UC San Diego COSMOS Cluster 8 on a field trip to Advanced BioMatrix in July 2018.

In addition to getting a crash course on the foundations of tissue engineering and regenerative medicine, this lucky group is also learning to use some of the latest tools and techniques of the trade.

As a part of their learning, the students got to spend a day at Advanced BioMatrix, which is a San Diego company that is working and developing new products in this area. The students got to see first-hand cutting edge 3D bioprinting (for printing living tissues and potentially organs), 3D cell culture, and tissue engineering. This is the third year COSMOS students have taken a field trip to Advanced BioMatrix.

In the second half of their COSMOS month, the students will get to work on teams in a real research project. They’ll get to experience what it’s like to brainstorm about research questions, approaches and hypotheses. They’ll then design and conduct experiments, analyze results, and create and deliver presentations in paper, oral, and poster forms.

Advanced BioMatrix donated collagen products that the students use in their own 3D cell culture projects as part of the COSMOS program.

“We are extremely impressed by the caliber of students in the COSMOS program. They ask high level questions, far above their grade. You can see that they truly want to learn,” said David Bagley, President, Advanced BioMatrix.

Advanced MioMatrix posted this photo in this poston their own LinkedIn feed.

Cluster 8 which is Tissue Engineering and Regenerative Medicine. It’s co-taught by Roberto Gaetani and Robert Sah. Robert Gaetani is a Research Scientist, Department of Bioengineering at UC San Diego and the  Sanford Consortium for Regenerative Medicine; and Robert Sah is a professor of bioengineering and orthopedic surgery at UC San Diego. The bioengineering department at the Jacobs School of Engineering is consistently ranked among the top 2 or 3 in the nation, according to the US News rankings of bioengineering graduate programs.

Last summer, Cluster 8 was featured in a story in the San Diego Union Tribune: "High school students explore tissue engineering at UCSD."

Learn more about the COSMOS UC San Diego program here. Each year, COSMOS applications are accepted during the month of January for the upcoming summer.

COSMOS 2018: Week 1

$
0
0

Kritin Karkare, a UC San Diego
bioengineering student, COSMOS TA
and former COSMOS student.
Welcome to the summer 2018 edition of COSMOS, the California State Summer School for Math and Science. I'm Kritin Karkare, a bioengineering undergraduate student here at the Jacobs School of Engineering, and a COSMOS teaching assistant this summer. Over the next four weeks of the program, I'll be giving an inside look at COSMOS, a summer science and engineering high school program that is spread across four of the University of California campuses: UC San Diego, UC Santa Cruz, UC Riverside and UC Davis. I participated in COSMOS as a high school student, and this summer I'm working as a teaching assistant in a cluster focused on synthetic biology. I'll be sharing my experiences, as well as interviewing students and professors to give more insight into the program. As a COSMOS 2014 alumnus, I was part of Cluster 8: Tissue Engineering, and I largely credit this program with motivating me to pursue bioengineering my freshman year at UC San Diego.

COSMOS is organized into clusters, which focus on fields that are largely unexplored in great detail in typical high school curriculums: earthquake engineering, synthetic biology, biodiesel fuel engineering and more. Students focus on one cluster during COSMOS. Aside from lecture and lab time, students go on field trips to places related to their field; last summer, Cluster 7 (Synthetic Biology) visited Illumina, the pioneering genome sequencing company, and Cluster 3 (Living Oceans and Global Climate Change) visited the Birch Aquarium at Scripps. Students also practice their science communication skillssomething not typically taught in high schools—by learning how to write a technical report and an ethics essay that is submitted to the COSMOS Ethics Science and Technology Contest. In the last two weeks, students produce a final project to showcase the knowledge they have learned and present it to parents, professors and peers.

Charles Tu, UC San Diego COSMOS program director
The following is an interview with Professor Charles Tu, UC San Diego COSMOS Program Director and Electrical and Computer Engineering Professor Emeritus. At UC San Diego, COSMOS is run by the Jacobs School of Engineering. The responses have been lightly edited for clarity.


How did you get involved with COSMOS?
About 12 years ago, I was associate dean of the Jacobs School of Engineering. There were three COSMOS faculty directors in different departments: one in biology, one in chemical engineering, and one in engineering. The program was run out of the School of Engineering from the Dean's office, and I was assigned to be in charge. Little did I know it would become a very important part of my life at UC San Diego.

What do you do for COSMOS outside of the summer program itself?
As director, during the school year I try to interact with other directors of COSMOS because there are three other sites: Davis, Santa Cruz and Irvine. I also talk to faculty who might be interested in starting new clusters here at UC San Diego. If instructors take a sabbatical for a year or have to take a break for other reasons, it is up to me to find an instructor for that cluster. I also try to expand to more clusters to improve the program for students. This year we had 800 applicants but can only accept 200 since we’re limited by budget and the number of beds in the dorm. Twelve years ago, we only had seven clusters, and now we have 10. I’m always looking for ways to expand student access to the program to meet that need.

What have been some of your favorite memories from COSMOS?
These usually come from the students themselves. For example, I see students maybe a block or a building away waving at me saying ‘Good morning, Dr. Tu’.  That makes me feel very good. I scuba dive regularly, and one time I didn't know that the students were at La Jolla Shores. I went diving, and when I came out I saw the COSMOS students there and we had fun talking in a different environment. So that was a great opportune moment.

What takeaways should students get from COSMOS?
One important takeaway is teamwork, because here we emphasize team projects. In real life projects are very complex and require multi-disciplinary teams of people.

What have been some of your favorite team projects?
COSMOS students learn about biodiesel from renewable sources
I remember a Cluster 1 team project developed a robot that had an arm that picked up trash, like crumpled up paper. Then the arm would pick it up and move it to a trash can. In Cluster 4 we have students who build structures with glue, sugar or some sticks and then put them on a shake table so they shake and fall apart, then have them build a similar one with reinforcement. In my own cluster 5 I was impressed with a couple of students who proposed their own projects, since we usually suggest projects for students to work on, though students can propose their own. One thing a group proposed and actually did was build a laser keyboard, which was a very impressive project.

What would you say is your favorite part of COSMOS?
My favorite part would be the students, especially meeting with them. Another favorite part is actually teaching COSMOS students, who are eager to learn and all very good students.  They ask great questions! Yesterday, the Discovery Lecture speaker told me at the end that all the COSMOS students asked more questions than the students in her class. I think that's my favorite part is that there's more interaction. It's good to know that the students are curious.

Anything for the students to look forward to in COSMOS?
They should look forward to finishing their project. The projects are open ended so they need to work hard to the very end. With projects it's always amazing to see the difference between the initial concept and the end product. You don't know what's going to happen since there are obstacles. Students get to feel this sense of achievement and accomplishment. I don't think they will look forward to departing at the end from their friends.

Favorite subject in high school?
My favorite subject in high school was math. I liked to solve puzzles.        

How did you get interested in science and engineering?
I grew up in Taiwan and moved to this country in Grade 10, but my English was not very good. I could not study biology since the names were so long and hard to pronounce. Math was a universal language and much easier for me, and physics used a lot of math.

What about electrical engineering? You're now in EE.
I did my Ph.D. in applied science. Then I was hired by ATT/ Bell Labs. I was doing something called service science and used a technique called spectroscopy to measure the property of metal surfaces and used similar techniques to study semiconductors and the surface of devices. Then I was hired into Bell Labs and was assigned to take over a lab which grows semi-conductors in thin films and transistors. At that time, transistors was electrical engineering. I was in a very good position in the company and well supported. However, my company wanted to move my department from New Jersey to Pennsylvania to be close to the factory. I thought if I have to move, I might as well look around. So I ended up here at UC San Diego.

Do you find that you like research better than industry?
I find that I made the right decision to come to academia. We are a research university and we have to get grants to hire graduate students. Each professor is an entrepreneurwe are basically a small company. I'm always interacting with bright Ph.D. students, so I learn a lot from my students. Research is generating new knowledge. Through this interaction with students it enriches my life. I think that I made the right choice.

Clip from NanoXpo 2018: Yao Jiang

$
0
0
Yao Jiang, a grad student in Prof. Liangfang Zhang’s lab, is making nanoparticles that can “train the immune system to fight cancer.” These nanoparticles are coated in the membranes of cancer cells and have shown promise in mice.

Jiang describes her project in this video, taken at NanoXpo 2018 this past May:



Poster title: "Cancer cell membrane-coated nanoparticles for anticancer vaccination"

NanoXpo is an annual event held by the Graduate Society of Nanoengineers to showcase graduate research in the UC San Diego Department of NanoEngineering.

COSMOS Week 2: Tissue engineering, synthetic biology and science communication

$
0
0

By Kritin Karkare

COSMOS students use electrical circuits to model genetic mechanisms in biological systems.
COSMOS, the California State Summer School for Math and Science, is a four-week summer science and engineering program focused on teaching motivated high school students topics rarely seen in high school curriculums. My name is Kritin Karkare and I’m a bioengineering undergraduate at UC San Diego, COSMOS Cluster 8 alumnus, and current Cluster 7 teaching assistant. For the four weeks of the program, I’ll be covering COSMOS life as a teaching assistant through this blog. In the first post, I provided an introduction to COSMOS and interviewed Charles Tu, the UC San Diego COSMOS director.

Week 2 of COSMOS is wrapped up, and this week I am joined by two students from clusters 7 and 8: Synthetic Biology, and Tissue Engineering and Regenerative Medicine, respectively. Read on for their thoughts on the program, and my experience so far as a cluster assistant!

The following are interviews with Joyita Bhattacharjee from Cluster 8: Tissue Engineering and Regenerative Medicine, and Lea Twicken and Julia Picker from Cluster 7: Synthetic Biology.

Why did you choose your cluster?
Joyita: I chose the cluster because I was very interested in biology. I'm very interested in regenerative medicine because that's a huge field right now and a lot of people are in need of it because of sports injuries, etc.
Lea: I went to a talk by J. Craig Venter, a synthetic biologist famous for sequencing the human genome and creating synthetic bacterial DNA. He came to a school in our district. My science teacher also suggested I check out summer science stuff so I looked into it.
Julia: My aunt sent me a link to COSMOS. I saw synthetic biology and thought it would be perfect because my friend and I were working on this club in school for genetic engineering and medicineI really wanted to learn about this stuff since it sounded like something fun to do.
Cluster 7 students visit the J. Craig Venter Institute to hear about synthetic biology research.

What have you worked on so far, and what is your final project?
Joyita: So far we've learned culturing, making dilution basic laboratory procedures. My project is seeing if inserting an extracellular matrix (ECM) prevents cells from dying due to hydrogen peroxide damage.

How did you get interested in biology?
Lea: When I was in middle school I thought I hated biology. I had a really bad biology teacher in 7th grade that made it all about memorization. I thought I really liked physics since my dad did physics. We had a required science fair project every year, and every single year, I ended up doing a biology topic-- I thought it was interesting. By eighth grade I did this project where I grew bacteria in my kitchen. Growing it in the kitchen was a terrible idea, but I was like that seems really cool.  
Julia: For me it's a funny story. In middle school we did Punnett squares. We did a lab where you have to make a baby with your partner. You have a bag of genes and then you combine them together and then draw it. This genetics unit made me like biology.  I could get a sense for why I am the way I am with biology, or maybe it was my vain middle school foolishness.


Any favorite memories so far?
Joyita: Recently we went on a field trip to BioMatrix and they showed us a bio printer. I thought that was pretty cool because we saw the bio printer print out a scaffold just using cartilage. 
  

What do you like about your cluster?
Joyita: Everything is very hands on and the stuff we learn is very high level, so I feel like it's a very good bonding ground  because everyone has to work together to get the homework done or explain the concepts to each other. It's definitely a good learning experience.

Cluster Assistant Thoughts

This is my second year helping with Cluster 7, and do you know what the hardest thing for me still is? Science communication! For those of you in outreach, you know that translating dense college research into sizeable chunks for high school, middle school, and elementary school students is hard. I’ve tried explaining my own major bioinformatics to elementary school students, and I struggle figuring out how to talk about coding and biology without producing confused looks on their faces within thirty seconds.  
The same line of thinking applies to COSMOS. In our Synthetic Biology cluster, many students have only taken one year of high school biology, yet through the program we need to expose them to electrical circuit design, recombinant DNA techniques, and more. My role as a TA is to translate the research-heavy facts into topics the students can explore and learn more about.
Cluster 7 students prepare an agarose gel electrophoresis to determine fragment sizes of DNA.
Motivating students to ask their own open-ended questions is my favorite part of outreach. Their eyes light up when they get the chance to design their own experiment; sometimes it requires push and shove to get them to think of multiple hypotheses and potential outcomes but the effort is worth it, especially at the end when they can call their completed projects their own.  

An integral part of the COSMOS curriculum is science communication. It is a skill relatively unseen in high school (and undergraduate!) curriculums and for the students to practice it now, will be a boon to their future as potential scientists and engineers. During weeks 1 and 2, they wrote essays on different ethical considerations for synthetic biology applications, such as bioterrorism, designer babies, GMOs and more. In addition, teams start preparing their projects to present the final two days of COSMOS. It is exciting that in just four weeks, they get so much exposure and a glimpse of the work that researchers do on a daily basis.

Clip from NanoXpo 2018: Rory Runser

$
0
0
Rory Runser, a grad student in Prof. Darren Lipomi's lab, is developing a stretchable, flexible solar tarp. His approach involves coating flexible plastic substrates with electronic materials called semiconducting polymers.

Runser describes his project in this video, taken at NanoXpo 2018 this past May:


Poster title: "Interfacial drawing of ultra-thin polymer films for solar tarps"

NanoXpo is an annual event held by the Graduate Society of Nanoengineers to showcase graduate research in the UC San Diego Department of NanoEngineering.

COSMOS Week 3: the professors’ perspectives

$
0
0

COSMOS is a four-week summer science and engineering program focused on teaching motivated high school students topics rarely seen in high school curriculums. My name is Kritin Karkare and I’m a bioengineering undergraduate at UC San Diego, a former COSMOS Cluster 8 (Tissue Engineering) alumnus, and current Cluster 7 (Synthetic Biology) teaching assistant.  

For the four weeks of the program, I covered COSMOS life as a teaching assistant through this blog. In the first post, I provided an introduction to COSMOS and interviewed Charles Tu, UC San Diego COSMOS director. In the second, I interviewed several students and gave some of my thoughts as a cluster assistant. For Week 3 I am highlighting the professors that work to create and teach the COSMOS cluster courses; the three I interviewed are the professors from Cluster 2: Engineering Design and Control of Kinetic Sculptures.

Meet Veronica Eliasson, Associate Professor in the Structural Engineering Department; Raymond de Callafon, Professor in the Mechanical and Aerospace Engineering (MAE) Department; and Nathan Delson, Associate Teaching Professor in the MAE Department. Their responses have been lightly edited for clarity.



What is Cluster 2?

Delson: We teach mechanical design and control of kinetic sculptures, so we introduce students to what it’s like to be a mechanical engineer. A key part is that they’re not just doing assignments, but that they’re creating something.  Since students come in with a different range of skills, we start with an individual project. For week 1, students work individually to build a mechanical clock. They choose any shape of clock pendulum that they want, write a clock report, and are able to take it home. In the process of doing that, they learn how to create Computer-Aided Design (CAD) models, which they use to laser cut and to 3D print their clock parts. Students also use our shop facility for drilling, reaming, press fitting, tapping, all the tools they need to use. They simulate their pendulum using a computer program, which is one way engineers use computers. We have a challenge to see who can predict the timing of their clock most accurately. We then transition to a team project. And teamwork can be a hard thing to learn, and Veronica has led a unique teambuilding exercise.  

Eliasson: They have to drop water balloons on a bed of nails and make the water balloons survive from certain heights; they have straws, tape, and a few other parts they can use for packaging. We use high-speed cameras so students can see how the balloons pop or survive. Each individual creates design concepts on their own over the weekend, then they form teams and create a risk chart and determine what to do. Then the team builds their devices and perform drops increasing in two-foot increments.

Delson: A lot of people have done a similar project but with an egg—but the problem with egg drops is that you get one egg, drop it off, and see if it survives or not. For some people it survives, some people it doesn’t. But even the people whose egg survives don’t know why it survives. There’s no data collection. It’s not like the teacher gives you two dozen eggs to keep on iterating and learning. Water balloons allow students to learn the scientific method: you try something, you observe, you adapt. By bringing in these high-end, high-speed cameras and using water balloons, you can do this experiment again and again and again. We change it into a recursive process and teach them about the design process.


Has the cluster gone on any field trips?

De Callafon: We did an off-campus tour of Solar Turbines, but in addition this year we added tours of labs at UC San Diego. We toured research labs at UC San Diego so the students get to see what actually goes on there. For instance I talk to them about controls, so I took them to the controls laboratory where both mechanical and aerospace students perform experiments in control. In addition, we showed them the wind tunnel, water channel, materials testing experiments used in senior year.

Eliasson: We took them to three different labs in the structural engineering department, two of them with more dynamic experiments. So it connects to the mechanical engineering concepts. But then also the really big labs that we have here at UC San Diego like the seismic research labs. Students get to wear hard hats and walk around. I heard them comment afterwards ‘I had no idea structural engineering could be so interesting!’

De Callafon: But that’s exactly why we do this. We want them to see what’s going on. I noticed in previous years that we didn’t do that, so I wanted to do that this year— take them into the lab and see what we’re doing and what they will be working on as students at UCSD. 


How did you get involved with COSMOS?


De Callafon: Nate pulled me into this 13 years ago and I have enjoyed it ever since. On a personal note, no one in my family went to college. I was the first one, and I noticed that it was very hard for me to get into college. I didn’t have the references or have anyone motivating me. It would have been nice if there was someone I could have looked up to. That’s why I love doing this. Maybe there are several kids who might really benefit from this program—that makes all the work worth it. I love the fact that we mix kids from really good schools and kids who have a lot of potential from not so good schools.


What are your favorite parts of teaching high school students?


Eliasson: Their curiosity. They have really good imaginations. They come up with crazy ideas.

It’s really interesting to see how the students come up with their projects and how they incorporate them with their printed parts or their CAD parts along with the parts we’ve given them and try to make them. They’re all laughing because they don’t know if it works. You can feel the tension, like the excitement. I think that’s really unique.



Delson Another thing that I really like is that the students are doing stuff above and beyond. First of all, nobody’s doing it for a grade. You give them an assignment with X, Y and Z criteria, and somebody tries to do a little bit extra. That’s what we want to encourage in people, and that’s being self-driven. We’ve been engraved since kindergarten through high school and beyond that teachers are telling you to do this to get this grade—it’s not about exploring things you’re interested in. So if you remove the grades the kids start becoming more curious.

De Callafon: When I started studying I had no idea what to do. I wanted to do so many different types of engineering. I did electrical for two years, was disappointed by it and went on to study mechanical engineering. I remember there were one or two professors that inspired me to do that. I hope to play that role too for our students. The other thing I enjoy is that I teach both undergraduate and graduate courses. I do consulting, I teach professionals. And it’s nice to add to my teaching that I teach high school students—it’s adding to the whole range of teaching I get to do. You learn that teaching is about targeting different audiences. It’s a good reality check for yourself and hopefully an inspiration for others.

COSMOS Week 4: final projects

$
0
0
COSMOS is a four week summer science and engineering program focused on teaching motivated high school students topics rarely seen in high school curriculums. My name is Kritin Karkare and I’m a bioengineering undergraduate student at UC San Diego, a former COSMOS Cluster 8 (Tissue Engineering) alumnus, and current Cluster 7 (Synthetic Biology) teaching assistant.  


For the four weeks of the program, I covered COSMOS life as a teaching assistant through this blog.  In the first post, I covered an introduction to COSMOS and interviewed Dr. Charles Tu, the UC San Diego COSMOS director. In the second I interviewed several students and shared some of my thoughts as a cluster assistant. The third week focused on the professors’ perspectives, and this week I am putting the spotlight back on the students through their final projects. In addition, I have some thoughts on my work in COSMOS. 


Cluster 6 final project:


Project: Volatile Gas Formation in Algae Formation
Members: Ricardo Ozuna, Brian Fang, Rosa Golchin and Bavan Rajan.  


Cluster 10 final project:


Project: Humanoid-Surveillance Robot
Members: Margaret Peterson, Skyler Stetson, Aishwarya Gunaseelan


Afterword: 

For anyone who read through all four articles, thank you! Teaching for COSMOS is one thing,
but writing about it for others to experience is another. I am glad I could provide some insight
about this program through my unique lens. When I first came into COSMOS as a TA last year,
I was frightened; it was my first time helping to teach, and there’s nothing scarier to a new teacher
than being asked a question that you can’t answer! 

Students, and in particular high school students, asked insightful questions outside of lecture
material that often would push me do outside research to find answers. Maybe it was just me,
but I think starting my teaching experience in COSMOS and not in the college classroom was
the best choice. If it weren’t for the students’ smart, novel - sometimes ludicrous - questions,
I’m not sure if I would be as motivated to learn how to teach more effectively.
In his interview, Charles Tu, director of COSMOS at UC San Diego, referenced the sheer
curiosity high school students have compared to college students -  they ask more questions,
and more importantly, more “impossible” questions. From my personal experience in a college
classroom, I believe this as well. The COSMOS students showed me that there’s still this great
potential from curious students like them that just needs to be nurtured with the right environment.
As an example, I think COSMOS’ mix of science communication practice, hands on experience,
mentorship from professors and its commitment to encouraging failure is a paradigm to model -
particularly because I gained an appreciation for the rigor of the scientific method after going
through the lab process. 
Admittedly, this job shows me just how little biology I know, even after studying it for two years.
For their final project, one group asked if it was possible to make glowing yogurt, which made
my head turn. It’s not a scientific inquiry that most people normally ask at the undergraduate level
and above. However, it is the silly, and ultimately ambitious questions like these that drive science
and engineering advancement. Why not be bold? You might fail, but then you have more things to
experiment on, and that’s the beauty of science. The process never fails to entertain the mind of the
curious. 

For these reasons, I’m glad that programs like COSMOS exist in order to let these young minds go wild. It’s not just the exposure to high level content; you can get that online easily without setting foot in a classroom. It’s empowering them with the tools to run their creative experiments, letting them feel disappointed when their hypothesis was wrong, and pushing them to keep going.  
As for me, I also gained something important from the students’ willingness to ask questions: a drive to motivate young scientists to keep asking good questions and to keep them coming fast. 
I want to thank the Jacobs School of Engineering for allowing me write and publish these blog posts. In addition, thank you to COSMOS for giving me the chance to be involved as a participant and teaching assistant, and finally, to Cluster 7 (Synthetic Biology) for the opportunity to be part of their community and engage the next generation in scientific discovery!

P.S. If you’re curious, there’s no consensus on glowing yogurt yet. While it seemed like the yogurt glowed, analysis of the sample a day later showed no glowing. Maybe that’s a final project to investigate next year?

Summer Engineering Institute final projects

$
0
0
More than 100 incoming freshman participated in the five-week residential Summer Engineering Instititue at the Jacobs School of Engineering this summer. The students took courses that count toward their degree, received support in transitioning from high school to college-level curriculum, familiarized themselves with the UC San Diego campus, and made friends, all in short order.

The second part of the Institute, run by the IDEA Engineering Student Center, included designing a hands-on final project in teams. The students demonstrated their projects to family, friends and peers at a closing ceremony on Sept. 7.

Here are just a few samples of the projects the incoming freshman students were able to conceptualize, design and build in less than three weeks.







Project: Sleep Apnea Tracker
Team: Clare Zhang, Jane Earley, Aileena Wen, Dora Ogbonne

The sleep apnea tracker uses an accelerometer inside a small case worn around the chest to monitor the user's breathing. If motion exceeds a certain threshold, it registers as breath. If no breath is taken within a 10 second period, the device alarms and buzzes, waking the user and alerting them that they stopped breathing normally.





Project: Directional Sound System
Team: Steven Rojas, Joel Yow, Branson Beihl

Microphones attached to small wrist and back straps monitor noise, and buzz when they register noise over a set level. This lets the user know that they need to pay attention in the direction of the buzz. The system is useful for anyone hard of hearing, or for those listening to music or wearing headphones who may not hear ambient sounds they need to react to.





Project: LED Bed
Team: Jonathan Trang, Matthew Gao, Isabelle Del Rio, Mayci Marquardt, Michelle Singer


The LED Bed is a night light that shines from under the user's bed, triggered by a pressure sensor. Instead of disturbing roommates or children by plugging in and turning on lights, this night light knows when the user is in or out of bed based on weight. It can be timed to go on for a certain number of minutes-- if the user gets up to go to the bathroom at night, for example, it will stay lit for 10 minutes, and automatically turn off after that. A light sensor in the Arduino will shut off the device during the day.





Project: Guitar Tuner
Team: Julianna, Rafael, Jake, Kyra, Eden


The guitar tuner listens for the selected frequency, and LED lights glow the indicated color when the correct frequency is detected.







Project: Iron Man hands-on kit
Team: Samuel Figueroa, Carl Villegas,
Guillermo Nogueira, Daniel Aguirre


These students built two glowing Iron Man hands and a face mask as part of a do-it-yourself kit. The 3D-printed components have accelerometers inside, so the embedded lights glow when the hands or face move. Buttons-- programmable in Python-- allow for different pulses and colors of light to shoot from the hands and eyes. The students created this kit to be a hands-on activity to help children engage with engineering principles.



Project: Anxiety Detector and Reliever
Team: Alex Lazaroiu, Joseph Liu, Marcus Milton, Ryan Wing

This wearable device monitors the user's heart rate, calibrating to his or her average beats per minute. The LED lights glow red if the heartbeat exceeds a certain threshold, since elevated heart rate is one sign of anxiety. The lights on the device then blink in time with a slower breathing pattern-- the user tries to sync their breath with the lights to calm down. The device turns green when they've returned to their normal heart rate.    


10 Things to Know Before You Start Engineering at UC San Diego

$
0
0
Antonio Sanchez, a professor in the department
of mechanical and aerospace engineering,
researches chemically reacting flows.

Antonio Sanchez, a professor of mechanical and aerospace engineering at UC San Diego and an alumnus of the Jacobs School of Engineering himself, gave incoming freshman in the Summer Engineering Institute some pearls of wisdom as they begin their engineering careers. He and some of the graduate students in his lab put their heads together to create a list of 10 things that new Jacobs School students should know, and the advice is too good not to share. So, without further ado:


10 Things to Know Before You Start Engineering at UC San Diego

1)      Be proud.Living in San Diego, we have the sun and weather and can take for granted that we have UC San Diego here. UCSD is one of the best universities in the entire world. The Shanghai Ranking [Academic Ranking of World Universities] lists it as No. 15 in the world. Then certain fields like mechanical engineering, my department, is ranked No. 4 in the world-- you get an idea of the place you are in.

2)      Be prepared. College is hard. It’s different than high school—you need to learn at a different depth. And the pace is different—UC San Diego is on a quarter schedule, so you only have 10 weeks. If you fall behind, there’s no way to catch up.


3)      Go to class. There are many good reasons why you should do that—your parents or you are paying for it. But there’s an even more important reason: as engineers, the rest of your life will be a nonstop process of learning. The big difference is now, here, there will be someone telling you what’s important and what’s secondary. Once you graduate you’re on your own and learning becomes much harder. You have very educated professors trying to teach you things—go to class, really.

4)      Don’t take shortcuts. The engineers who are building airplanes, bridges or computers, they don’t cheat. If they did, the airplane or whatever would fall. Please don’t cheat. Do the honest work. It’s much better to get a ‘C’ than to cheat. Be professional and you’ll be treated as a professional.


5)      Be patient. I was looking at your projects and it’s clear you will be great engineers one day. You’re here to build new cars, new engines, new computers, new software…. But the truth is you’re not going to see much of that at first. It’s all going to be math and chemistry and fundamental science. And at one point you might be wondering why it is that you’re not building airplanes? You’ll get there. Those building blocks are really necessary to make sure you learn in depth.

6)      Make the most of these resources. You’re paying a lot of money, and UCSD has these labs and computers and I think one thing students don’t use that much is office hours. An average professor charges between $500 and $1,000 an hour as a consultant—that’s free to you! You have someone waiting in their lab or office to meet with you—go ask questions. And TA’s have office hours too and are sometimes more knowledgeable on the course than the professor. Go to office hours, you’re paying for it.


7)      Who do you want to be in 10 years? That’s a key question. Take some time and think about that. Do you want to be working for SpaceX, want to be a professor, want to be a researcher in a national lab? Think about that, and then plan accordingly. You can shape your profile in these four years—be whoever you want to be. Don’t go for the easy ‘A’, go for what really interests you. It may be harder, but one day when you’re being interviewed by a company you’ll be able to tell them why you’re different and why you chose your path. Join a club to build this profile, too. And if there’s nothing that interests you, then create your own club. Think about who you want to be in 10 years.

8)      Broaden your horizons. There is life beyond engineering. For electives, most people do something easy. I say challenge yourself—take Chinese, take sign language, study medieval history, whatever. Do something out of your comfort zone. Study abroad—we’re making an effort to make those programs more accessible for you. By my accent you know I’m from Spain, but I studied abroad as well and it really changed my life. You get to challenge yourself these four years, so broaden your horizons.


9)      Embrace a professor. One day you’ll need a professor to write a letter of recommendation, so take time to develop a relationship with a professor. That’s important to your future success.

10)  Have fun! Remember that you’re here to get an education to become an engineer, but you’re surrounded by beautiful, brilliant people, so socialize. Don’t forget that. At the same time, you’re an adult—you have to be responsible. Be safe.



ThoughtSTEM, company founded by UC San Diego alumni, receives $330k grant from National Science Foundation

$
0
0

ThoughtSTEM, LLC, a San Diego-based company teaching computer science skills to students ages 5 to 18, has received a $330,000 Small Business Innovation Research grant from the National Science Foundation. ThoughtSTEM is most well-known for being the first company to release a Minecraft Modding software, LearnToMod, that allows kids as young as 5 to reprogram the popular video game, Minecraft.

ThoughtSTEM is led by UC San Diego computer science Ph.D. alumnus Stephen Foster and biochemistry PhD alumna Lindsey Handley.

“Thanks to the NSF, we are now going to be able to reach more students in different countries with different interests," Handley said. "The same experience students have had in our classrooms will soon be available online to both students... and adults. We're really interested in sharing our educational tools with more adults so they can help us reach more kids.”

With this new grant funding, ThoughtSTEM will able to offer more of their innovative, video game-inspired computer science curriculum to students around the world by moving online the curriculum they've been using in classes with students in San Diego. There will also be a push to develop a completely new computer science curriculum designed to meet the interests of a broader population of video game-playing students worldwide.

The mission of ThoughtSTEM is to find every student interested in understanding how computer programming works and teach them in a context they can understand - video games. ThoughtSTEM has taught over 7,000 students in San Diego and over 100,000 students online.

This grant is allowing us to accelerate our development of computer science educational products for students who we are looking for new ways to interact with their favorite video games," Foster said. "Our students in San Diego have really enjoyed our approach, and we are excited to now be able to share it with other areas.”

ThoughtSTEM also was co-founded by computer science Ph.D. alumna Sarah Guthals, who now works at GitHub.
Viewing all 721 articles
Browse latest View live